Skip to main content

Advertisement

Log in

Salt leaching leads to drier soils in disturbed semiarid woodlands of central Argentina

Oecologia Aims and scope Submit manuscript

Abstract

Disturbances in semiarid environments have revealed a strong connection between water, salt and vegetation dynamics highlighting how the alteration of water fluxes can drive salt redistribution process and long-term environmental degradation. Here, we explore to what extent the reciprocal effect, that of salt redistribution on water fluxes, may play a role in dictating environmental changes following disturbance in dry woodlands. We assessed salt and water dynamics comparing soil-solution electrical conductivity, chloride concentration, soil water content (SWC) and soil matric and osmotic water potential (Ψm, Ψos) between disturbed and undisturbed areas. A large pool of salts and chlorides present in undisturbed areas was absent in disturbed plots, suggesting deep leaching. Unexpectedly, this was associated with slight but consistently lower SWC in disturbed versus undisturbed situations during two growing seasons. The apparent paradox of increased leaching but diminishing SWC after disturbance can be explained by the effect of native salt lowering Ψos enough to prevent full soil drying. Under disturbed conditions, the onset of deep drainage and salt leaching would raise Ψos allowing a decline of Ψm and SWC. Soil water storage seems to be modulated by the presence (under natural conditions) and partial leaching (following selective shrub disturbance) of large salt pools. This counterintuitive effect of disturbances may be important in semiarid regions where deep soil salt accumulation is a common feature. Our results highlight the importance of water–salt–vegetation coupling for the understanding and management of these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Aguiar MR, Sala OE (1999) Patch structure, dynamics, and implications for the functioning of arid ecosystems. Trends Ecol Evol 14:273–277

    Article  PubMed  Google Scholar 

  • Aguilera MO, Steinaker DF, Demaría MR (2003) Runoff and soil loss in undistrubed and roller-seeded shrublands on semiarid Argentina. J Range Manag 56:227–233

    Article  Google Scholar 

  • Archer S (1995) Tree-grass dynamics in a Prosopis -thornscrub savanna parkland: reconstructing the past and predicting the future. Ecoscience 2:83–99

    Google Scholar 

  • Baldi G, Jobbágy EG (2012) Land use in the dry subtropics: ecosystem structure and production across contrasting human contexts. J Arid Environ 76:115–127

    Article  Google Scholar 

  • Barrett-Lennard EG (2003) The interaction between waterlogging and salinity in higher plants: causes, consequences and implications. Plant Soil 253:35–54

    Article  CAS  Google Scholar 

  • Caldwell MM, Dawson TE, Richards JH (1998) Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia 113:151–161

    Article  Google Scholar 

  • Campbell GS (1985) Soil Physics with Basic. Elsevier, Amsterdam

    Google Scholar 

  • Chapin FS et al (2000) Consequences of changing biodiversity. Nature 405:234–242

    Article  PubMed  CAS  Google Scholar 

  • Contreras S, Jobbágy EG, Villagra PE, Nosetto MD, Puigdefábregas J (2011) Remote sensing estimates of supplementary water consumption by arid ecosystems of central Argentina. J Hydrol 397:10–22

    Article  Google Scholar 

  • Dorrough J, Scroggie M (2008) Plant responses to agricultural intensification. J Appl Ecol 45:1274–1283

    Article  Google Scholar 

  • Eagleson PS (1982) Ecological optimality in water-limited natural soil-vegetation systems: 1. Theory and hypothesis. Water Resour Res 18:325–340

    Article  Google Scholar 

  • Eberbach PL (2003) The eco-hydrology of partly cleared, native ecosystems in southern Australia: a review. Plant Soil 257:357–369

    Article  CAS  Google Scholar 

  • Edmunds WM, Tyler SW (2002) Unsaturated zones as archives of past climates: towards a new proxy for continental regions. Hydrogeol J 10:216–228

    Article  Google Scholar 

  • Favreau G et al (2002) Estimate of recharge of a rising water table in semiarid Niger from H-3 and C-14 modeling. Ground Water 40:144–151

    Article  PubMed  CAS  Google Scholar 

  • Fernald A, Garduno H (2010) Reduced soil moisture after tree conversion to herbaceous vegetation and implications for changes in water availability thresholds. In: Eos Trans AGU, 91(26), Meet Am Suppl., vol H31A-06, Brazil

  • Fernández ME, Gyenge JE, Licata J, Schlichter T, Bond B (2008) Belowground interactions for water between trees and grasses in a temperate semiarid agroforestry system. Agrofor Syst 74:185–197

    Article  Google Scholar 

  • Gasparri NI, Grau R (2009) Deforestation and fragmentation of Chaco dry forest in NW Argentina (1972–2007). For Ecol Manag 258:913–921

    Article  Google Scholar 

  • George RJ, McFarlane D, Nulsen B (1997) Salinity threatens the viability of agriculture and ecosystems in Western Australia. Hydrogeol J 5:6–21

    Article  Google Scholar 

  • George RJ, Nulsen RA, Ferdowsian R, Raper GP (1999) Interactions between trees and groundwater in recharge and discharge areas—A survey of Western Australian sites. Agric Water Manag 39:91–113

    Article  Google Scholar 

  • Grau HR, Gasparri NI, Aide TM (2005) Agriculture expansion and deforestation in seasonally dry forests of north-west Argentina. Environ Conserv 32:140–148

    Article  Google Scholar 

  • Hatton TG, Salvucci GD, Wu HI (1997) Eagleson’s optimality theory of ecohydrological equilibrium: quo vadis? Funct Ecol 11:665–674

    Article  Google Scholar 

  • Hultine KR, Scott RL, Cable WL, Goodrich DC, Williams DG (2004) Hydraulic redistribution by a dominant, warm-desert phreatophyte: seasonal patterns and response to precipitation pulses. Funct Ecol 18:530–538

    Article  Google Scholar 

  • Huxman TE et al (2005) Ecohydrological implications of woody plant encroachment. Ecology 86:308–319

    Article  Google Scholar 

  • Jackson RB, Moore LA, Hoffmann WA, Pockman WT, Linder CR (1999) Ecosystem rooting depth determined with caves and DNA. Proc Natl Acad Sci USA 96:11387–11392

    Article  PubMed  CAS  Google Scholar 

  • Jayawickreme DH, Santoni CS, Kim JH, Jobbágy EG, Jackson RB (2011) Changes in hydrology and salinity accompanying a century of agricultural conversion in Argentina. Ecol Appl 21:2367–2379

    Article  PubMed  Google Scholar 

  • Jobbágy E, Nosetto MD, Santoni C, Baldi G (2008) El desafío ecohidrológico de las transiciones entre sistemas leñosos y herbáceos en la llanura Chaco-Pampeana. Ecol Austral 18:305–322

    Google Scholar 

  • Jobbágy EG, Nosetto MD, Villagra PE, Jackson RB (2011) Water subsidies from mountains to deserts: their role in sustaining groundwater-fed oases in a sandy landscape. Ecol Appl 21:678–694

    Article  PubMed  Google Scholar 

  • Jobbágy EG, Baldi G, Nosetto MD (2012) Tree plantation in South America and the water cycle: Impacts and emergent opportunities. In: Schlichter T, Montes L (eds) Forests in Development. A Vital Balance. Springer, Berlin, pp 53–63

    Google Scholar 

  • Kunst C, Ledesma R, Basan Nickish M, Angella G, Prieto D, Godoy J (2003) Rolado de “fachinales” e infiltración de agua en el Chaco occidental (Argentina). RIA INTA 32:105–126

    Google Scholar 

  • Lambers H, Chapin FS III, Pons TL (1998) Plant Physiological Ecology. Springer, New York

    Book  Google Scholar 

  • Licata JA, Gyenge JE, Fernández ME, Schlichter TM, Bond BJ (2008) Increased water use by ponderosa pine plantations in northwestern Patagonia, Argentina compared with native forest vegetation. For Ecol Manag 255:753–764

    Article  Google Scholar 

  • Littell RC, Milliken GA, Stroup WW, Wolfinger RD (1996) SAS System for Mixed Models. Cary, NC

    Google Scholar 

  • Mapping KA, Pate JS, Bell TL (2003) Productivity and water relations of burnt and long-unburnt semi-arid shrubland in Western Australia. Plant Soil 257:321–340

    Article  Google Scholar 

  • Marchesini VA (2011) El desmonte selectivo en el Chaco Árido analizado a diferentes escalas espaciales. In: Natural Resources. Dept of Agricultural Sciences, University of Buenos Aires, Buenos Aires

  • Marchesini VA, Sobrino JA, Hidalgo MV, Di Bella CM (2009) La eliminación selectiva de vegetación arbustiva en un bosque seco de Argentina y su efecto sobre la dinámica de agua. Rev Teledetección 31:93–102

    Google Scholar 

  • McElrone AJ, Pockman WT, Martínez-Vilalta J, Jackson RB (2004) Variation in xylem structure and function in stems and roots of trees to 20 m depth. New Phytol 163:507–517

    Article  Google Scholar 

  • Miles L et al (2006) A global overview of the conservation status of tropical dry forest. J Biogeogr 33:491–505

    Article  Google Scholar 

  • Moore GW, Heilman JL (2011) Proposed principles governing how vegetation changes affect transpiration. Ecohydrology 4:351–358

    Article  Google Scholar 

  • Moore GW, Barre DA, Owens MK (2010) Changes in soil chloride following shrub removal and subsequent regrowth. Geoderma 158:148–155

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  PubMed  CAS  Google Scholar 

  • Muñoz-Carpena R, Regalado CM, Ritter A, Alvarez-Benedí J, Socorro AR (2005) TDR estimation of electrical conductivity and saline solute concentration in a volcanic soil. Geoderma 124:399–413

    Article  Google Scholar 

  • Newman BD, Breshears D, Gard MO (2010) Evapotranspiration partitioning in a semiarid woodland: ecohydrology heterogeneity and connectivity of vegetation patches. Vadose Zone 9:561–571

    Article  Google Scholar 

  • Oesterheld M (2005) Los cambios de la agricultura Argentina y sus consecuencias. Ciencia Hoy 15:6–12

    Google Scholar 

  • Paruelo JM, Guerschman JP, Verón SR (2005) Expansión agrícola y cambios en el uso del suelo. Ciencia Hoy 15:14–23

    Google Scholar 

  • Peña Zubiate CA, Anderson DL, Demmi MA, Saenz JL, D’Hiriart A (eds) (1998) Carta de suelos y vegetación de la provincia de San Luis. Instituto Nacional de Tecnología Agropecuaria (INTA), San Luis, Argentina

  • Phillips FM (1994) Environmental tracers for water movement in desert soils of the American Southwest. Soil Sci Soc Am J 58:15–24

    Article  Google Scholar 

  • Santoni CS, Jobbágy EG, Contreras S (2010) Vadose zone transport in dry forests of central Argentina: role of land use. Water Resour Res 46:W10541

    Article  Google Scholar 

  • Scanlon BR (1991) Evaluation of moisture flux from chloride data in desert soils. J Hydrol 128:137–156

    Article  CAS  Google Scholar 

  • Scanlon BR (2005) Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Glob Change Biol 11:1577–1593

    Article  Google Scholar 

  • Scanlon BR, Healy RW, Cook P (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10:18–39

    Article  CAS  Google Scholar 

  • Scanlon BR et al (2006) Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol Process 20:3335–3370

    Article  CAS  Google Scholar 

  • Sukhija BS, Reddy DV, Nagabhushanam P, Hussain S (2003) Recharge processes: piston flow vs preferential flow in semi-arid aquifers of India. Hydrogeol J 11:387–395

    Article  CAS  Google Scholar 

  • Thorburn PJ, Cowie BA, Lawrence PA (1991) Effect of land development on groundwater recharge determined from non-steady chloride profiles. J Hydrol 124:43–58

    Article  Google Scholar 

  • Turner NC (1988) Measurement of plant water status by the pressure chamber technique. Irrig Sci 9:289–308

    Article  Google Scholar 

  • Villagra PE, Cony MA, Mantován NG, Rossi BE (2004) Ecología y manejo de los algarrobales de la provincia fitogeográfica del monte. In: Frangi J, Goya J (eds) Ecología y manejo de bosques nativos de Argentina. Universidad de la Plata, pp 3–32

  • Walker J, Bullen F, Williams BG (1993) Ecohydrological changes in the Murray-Darling Basin. I The number of trees cleared over two centuries. J Appl Ecol 30:265–273

    Article  Google Scholar 

  • Walvoord MA et al (2003) A reservoir of nitrate beneath desert soils. Science 302:1021–1024

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Berndtsson R, Li X, Kang E (2004) Water balance change for a re-vegetated xerophyte shrub area. Hydrol Sci J 49:283–295

    Article  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  PubMed  CAS  Google Scholar 

  • Zou CB, Breshears D, Newman BD, Wilcox BP, Gard MO, Rich PM (2008) Soil water dynamics under low-versus high-ponderosa pine tree density: ecohydrological functioning and restoration implications. Ecohydrology 1:309–315

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to SER BEEF S.A. for providing access to its ranch and its valuable field information, and to the Gómez family for their hospitality. R. Paéz, S. Ballesteros, E. Crespo, C. Santoni, E. Fernández and D. Steinaker provided field and laboratory support. Special thanks to James F. Reynolds and ARIDNET National Science Foundation Grant 0234186. This work was funded by the Inter-American Institute for Global Change Research (IAI, CRNII 2031; US-National Science Foundation Grant GEO-0452325), International Development Research Center (IDRC, Canada 106601-001), Universidad de Buenos Aires (UBACyT 20020100100736) and Agencia Nacional de Promoción Científica y Tecnológica de Argentina (PICT 1840/06). V.A.M, R.J.F. and E.G.J. were partially supported by CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria A. Marchesini.

Additional information

Communicated by Tim Seastedt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchesini, V.A., Fernández, R.J. & Jobbágy, E.G. Salt leaching leads to drier soils in disturbed semiarid woodlands of central Argentina. Oecologia 171, 1003–1012 (2013). https://doi.org/10.1007/s00442-012-2457-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-012-2457-y

Keywords

Navigation