Anderson TR (1998) Cessation of breeding in the multi-brooded house sparrow (Passer domesticus). Int Stud Sparrows 25:3–30
Google Scholar
Anderson TR (2006) Biology of the ubiquitous house sparrow: from genes to populations. Oxford University Press, Oxford
Book
Google Scholar
Bates D, Maechler M (2009) lme4: linear mixed-effects models using S4 classes. R Package Version 0.999375-32
Google Scholar
Bell G, Koufopanou V (1986) The cost of reproduction. Oxf Surv Evol Biol 3:83–131
Google Scholar
Bernardo J (1996) The particular maternal effect of propagule size, especially egg size: patterns, models, quality of evidence and interpretations. Am Zool 36:216–236
Google Scholar
Billing AM, Lee AM, Skjelseth S, Borg ÅA, Hale MC, Slate J, Pärn H, Ringsby TH, Sæther B-E, Jensen H (2012) Evidence of inbreeding depression but not inbreeding avoidance in a natural house sparrow population. Mol Ecol 21:1487–1499
PubMed
Article
Google Scholar
Christians JK (2002) Avian egg size: variation within species and inflexibility within individuals. Biol Rev 77:1–26
PubMed
Article
Google Scholar
Davis J, Davis BS (1954) The annual gonad and thyroid cycles of the English sparrow in southern California. Condor 56:328–345
Article
Google Scholar
Engen S, Ringsby TH, Sæther B-E, Lande R, Jensen H, Lillegard M, Ellegren H (2007) Effective size of fluctuating populations with two sexes and overlapping generations. Evolution 61:1873–1885
PubMed
Article
Google Scholar
Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman, Harlow
Google Scholar
Fox CW, Czesak ME (2000) Evolutionary ecology of progeny size in arthropods. Annu Rev Entomol 45:341–369
PubMed
Article
CAS
Google Scholar
Garant D, Hadfield JD, Kruuk LEB, Sheldon BC (2008) Stability of genetic variance and covariance for reproductive characters in the face of climate change in a wild bird population. Mol Ecol 17:179–188
PubMed
Article
Google Scholar
Gosler AG, Greenwood JJD, Baker JK, Davidson NC (1998) The field determination of body size and condition in passerines: a report to the British ringing committee. Bird Study 45:92–103
Article
Google Scholar
Hargitai R, Torok J, Toth L, Hegyi G, Rosivall B, Szigeti B, Szollosi E (2005) Effects of environmental conditions and parental quality on inter- and intraclutch egg-size variation in the collared flycatcher (Ficedula albicollis). Auk 122:509–522
Article
Google Scholar
Hegner RE, Wingfield JC (1986) Gonadal development during autumn and winter in house sparrows. Condor 88:269–278
Article
Google Scholar
Heinroth O (1922) Die Beziehungen zwischen Vogelgewicht, Eigewicht, Gelegegewicht und Brutdauer. J Ornithol 70:172–285
Article
Google Scholar
Holand AM, Steinsland I, Martino S, Jensen H (2011) Animal models and integrated nested Laplace approximations. Preprint Statistics No 4/2011, Norwegian University of Science and Technology, Trondheim
Husby A, Sæther B-E, Jensen H, Ringsby TH (2006) Causes and consequences of adaptive seasonal sex ratio variation in house sparrows. J Anim Ecol 75:1128–1139
PubMed
Article
Google Scholar
Järvinen A (1991) Proximate factors affecting egg volume in sub-arctic hole-nesting passerines. Ornis Fenn 68:99–104
Google Scholar
Jensen H, Sæther B-E, Ringsby TH, Tufto J, Griffith SC, Ellegren H (2003) Sexual variation in heritability and genetic correlations of morphological traits in house sparrow (Passer domesticus). J Evol Biol 16:1296–1307
PubMed
Article
CAS
Google Scholar
Jensen H, Sæther B-E, Ringsby TH, Tufto J, Griffith SC, Ellegren H (2004) Lifetime reproductive success in relation to morphology in the house sparrow Passer domesticus. J Anim Ecol 73:599–611
Article
Google Scholar
Jensen H, Bremset EM, Ringsby TH, Sæther B-E (2007) Multilocus heterozygosity and inbreeding depression in an insular house sparrow metapopulation. Mol Ecol 16:4066–4078
PubMed
Article
Google Scholar
Jensen H, Steinsland I, Ringsby TH, Sæther B-E (2008) Evolutionary dynamics of a sexual ornament in the house sparrow (Passer domesticus): the role of indirect selection within and between sexes. Evolution 62:1275–1293
PubMed
Article
Google Scholar
Jones OR, Gaillard JM, Tuljapurkar S, Alho JS, Armitage KB, Becker PH, Bize P, Brommer J, Charmantier A, Charpentier M, Clutton-Brock T, Dobson FS, Festa-Bianchet M, Gustafsson L, Jensen H, Jones CG, Lillandt BG, McCleery R, Merilä J, Neuhaus P, Nicoll MAC, Norris K, Oli MK, Pemberton J, Pietiainen H, Ringsby TH, Roulin A, Sæther B-E, Setchell JM, Sheldon BC, Thompson PM, Weimerskirch H, Wickings EJ, Coulson T (2008) Senescence rates are determined by ranking on the fast-slow life-history continuum. Ecol Lett 11:664–673
PubMed
Article
Google Scholar
Jonsson N, Jonsson B (1999) Trade-off between egg mass and egg number in brown trout. J Fish Biol 55:767–783
Article
Google Scholar
Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106
PubMed
Article
Google Scholar
Kontiainen P, Brommer JE, Karell P, Pietiainen H (2008) Heritability, plasticity and canalization of Ural owl egg size in a cyclic environment. J Evol Biol 21:88–96
PubMed
CAS
Google Scholar
Krist M (2011) Egg size and offspring quality: a meta-analysis in birds. Biol Rev 86:692–716
PubMed
Article
Google Scholar
Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer, Sunderland
Google Scholar
Magrath RD (1991) Nestling weight and juvenile survival in the blackbird Turdus merula. J Anim Ecol 60:335–351
Article
Google Scholar
Magrath RD (1992) The effect of egg mass on the growth and survival of blackbirds: a field experiment. J Zool 227:639–653
Article
Google Scholar
Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655
PubMed
Article
CAS
Google Scholar
Nager RG (2006) The challenges of making eggs. Ardea 94:323–346
Google Scholar
Nager RG, van Noordwijk AJ (1992) Energetic limitation in the egg-laying period of Great tits. Proc R Soc Lond B 249:259–263
Article
Google Scholar
Nager RG, Zandt HS (1994) Variation in egg size in great tits. Ardea 82:315–328
Google Scholar
Nol E, Smith JNM (1987) Effects of age and greeding experience on seasonal reproductive success in the song sparrow. J Anim Ecol 56:301–313
Article
Google Scholar
Ojanen M, Orell M, Vaisanen RA (1981) Egg size variation within passerine clutches: effects of ambient temperature and laying sequence. Ornis Fenn 58:93–108
Google Scholar
Pärn H, Jensen H, Ringsby TH, Sæther B-E (2009) Sex-specific fitness correlates of dispersal in a house sparrow metapopulation. J Anim Ecol 78:1216–1225
PubMed
Article
Google Scholar
Perrins CM (1996) Eggs, egg formation and the timing of breeding. Ibis 138:2–15
Google Scholar
Pettifor RA, Perrins CM, McCleery RH (2001) The individual optimization of fitness: variation in reproductive output, including clutch size, mean nestling mass and offspring recruitment, in manipulated broods of great tits Parus major. J Anim Ecol 70:62–79
Article
Google Scholar
Pianka ER, Parker WS (1975) Age-specific reproductive tactics. Am Nat 109:453–464
Article
Google Scholar
Pinowska B (1979) The effect of energy and building resources of females on the production of house sparrow (Passer domesticus (L.)) populations. Pol J Ecol 27:363–396
Google Scholar
Potti J (2008) Temperature during egg formation and the effect of climate warming on egg size in a small songbird. Acta Oecol 33:387–393
Article
Google Scholar
R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.r-project.org
Ringsby TH, Sæther B-E, Solberg EJ (1998) Factors affecting juvenile survival in house sparrow Passer domesticus. J Avian Biol 29:241–247
Article
Google Scholar
Ringsby TH, Sæther B-E, Tufto J, Jensen H, Solberg EJ (2002) Asynchronous spatiotemporal demography of a house sparrow metapopulation in a correlated environment. Ecology 83:561–569
Article
Google Scholar
Roff DA (2002) Life history evolution. Sinauer, Sunderland
Google Scholar
Rue H, Martino S, Chopin N (2009) Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J R Stat Soc B 71:319–392
Article
Google Scholar
Sæther B-E, Ringsby TH, Bakke O, Solberg EJ (1999) Spatial and temporal variation in demography of a house sparrow metapopulation. J Anim Ecol 68:628–637
Article
Google Scholar
Schifferli L (1973) Effect of egg weight on subsequent growth of nestling great tits Parus major. Ibis 115:549–558
Article
Google Scholar
Schifferli L (1980) Changes in the fat reserves in female house sparrows Passer domesticus during egg laying. Proc Int Ornithol Congr 17(2):1129–1135
Google Scholar
Seel DC (1968) Clutch-size incubation and hatching success in house sparrow and tree sparrow Passer spp at Oxford. Ibis 110:270–282
Article
Google Scholar
Sinervo B (1990) The evolution of maternal investment in lizards - an experimental and comparative-analysis of egg size and its effects on offspring performance. Evolution 44:279–294
Article
Google Scholar
Smith CC, Fretwell SD (1974) Optimal balance between size and number of offspring. Am Nat 108:499–506
Article
Google Scholar
Smith HG, Ottosson U, Ohlsson T (1993) Interclutch variation in egg mass among starlings Sturnus vulgaris reflects female condition. Ornis Scand 24:311–316
Article
Google Scholar
Smith HG, Ohlsson T, Wettermark KJ (1995) Adaptive significance of egg size in the European starling: experimental tests. Ecology 76:1–7
Article
Google Scholar
Steinsland I, Jensen H (2010) Utilizing gaussian markov random field properties of bayesian animal models. Biometrics 66:763–771
PubMed
Article
Google Scholar
Su GS, Liljedahl LE, Gall GAE (1997) Genetic and environmental variation of female reproductive traits in rainbow trout (Oncorhynchus mykiss). Aquaculture 154:115–124
Article
Google Scholar
Svensson L (1992) Identification guide to European passerines, 4th edn. Svensson, Stockholm
Google Scholar
Tinbergen JM, Boerlijst MC (1990) Nestling weight and survival in individual great tits (Parus major). J Anim Ecol 59:1113–1127
Article
Google Scholar
Tryjanowski P, Sparks TH, Kuczynski L, Kuzniak S (2004) Should avian egg size increase as a result of global warming? A case study using the red-backed shrike (Lanius collurio). J Ornithol 145:264–268
Article
Google Scholar
Visser ME, Holleman LJM, Caro SP (2009) Temperature has a causal effect on avian timing of reproduction. Proc R Soc Lond B 276:2323–2331
Article
Google Scholar
Williams TD (1994) Intraspecific variation in egg size and egg composition in birds: effects on offspring fitness. Biol Rev 69:35–59
PubMed
Article
CAS
Google Scholar
Williams TD (1996) Variation in reproductive effort in female zebra finches (Taeniopygia guttata) in relation to nutrient-specific dietary supplements during egg laying. Physiol Zool 69:1255–1275
Google Scholar
Wingfield JC, Hahn TP, Maney DL, Schoech SJ, Wada M, Morton ML (2003) Effects of temperature on photoperiodically induced reproductive development, circulating plasma luteinizing hormone and thyroid hormones, body mass, fat deposition and molt in mountain white-crowned sparrows, Zonotrichia leucophrys oriantha. Gen Comp Endocr 131:143–158
PubMed
Article
CAS
Google Scholar
Yampolsky LY, Scheiner SM (1996) Why larger offspring at lower temperatures? A demographic approach. Am Nat 147:86–100
Article
Google Scholar