Identifying the demographic processes relevant for species conservation in human-impacted areas: does the model matter?

Abstract

The identification of the demographic processes responsible for the decline in population growth rate (λ) in disturbed areas would allow conservation efforts to be efficiently directed. Integral projection models (IPMs) are used for this purpose, but it is unclear whether the conclusions drawn from their analysis are sensitive to how functional structures (the functions that describe how survival, growth and fecundity vary with individual size) are selected. We constructed 12 IPMs that differed in their functional structure by combining two reproduction models and three functional expressions (generalized linear, cubic and additive models), each with and without simplification. Models were parameterized with data from two populations of two endangered cacti subject to different disturbance intensities. For each model, we identified the demographic processes that most affected λ in the presence of disturbance. Simulations were performed on artificial data and analyzed as above to assess the generality of the results. In both empirical and simulated data, the same processes were identified as making the largest contribution to changes in λ regardless of the functional structure. The major differences in the results were due to misspecification of the fecundity functions, whilst functional expression and model simplification had lesser effects. Therefore, as long as the demographic attributes of the species are well known and incorporated into the model, IPMs will robustly identify the processes that most affect the growth of populations subject to disturbance, making them a reliable tool for developing conservation strategies.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Arias-Montes S, Guzmán U, Gama S (1997) Cactaceae. Flora del Valle de Tehuacán-Cuicatlán, México, Fascículo 14. Instituto de Biología. Universidad Nacional Autónoma de México, México

  2. Bhattacharyya A (1946) On a measure of divergence between two multinomial populations. Sankhya Indian J Stat 7:401–406

    Google Scholar 

  3. Buhl-Mortensen L (1996) Type-II statistical errors in environmental science and the precautionary principle. Mar Pollut Bull 32:528–531

    Article  CAS  Google Scholar 

  4. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  5. Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8:559–568

    Article  Google Scholar 

  6. Caswell H (2000) Prospective and retrospective perturbation analyses: their roles in conservation biology. Ecology 81:619–627

    Article  Google Scholar 

  7. Caswell H (2001) Matrix population models: construction, analysis, and interpretation. Sinauer, Sunderland

    Google Scholar 

  8. Chapin FS III, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE, Mack MC, Díaz S (2000) Consequences of changing biodiversity. Nature 405:234–242. doi:10.1038/35012241

    PubMed  Article  CAS  Google Scholar 

  9. Childs DZ, Rees M, Rose KE, Grubb PJ, Ellner SP (2003) Evolution of complex flowering strategies: an age- and size-structured integral projection model. Proc R Soc Lond B 270:1829–1838. doi:10.1098/rsb.2003.2399

    Article  Google Scholar 

  10. Dahlgren JP, Ehrlén J (2009) Linking environmental variation to population dynamics of a forest herb. J Ecol 97:666–674. doi:10.1111/j.1365-2745.2009.01504.x

    Article  Google Scholar 

  11. Dahlgren JP, Ehrlén J (2011) Incorporating environmental change over succession in an integral projection model of population dynamics of a forest herb. Oikos 120:1183–1190. doi:10.1111/j.1600-0706.2010.19063.x

    Article  Google Scholar 

  12. Dahlgren JP, García MB, Ehrlén J (2011) Nonlinear relationships between vital rates and state variables in demographic models. Ecology 92:1181–1187. doi:10.1890/10-1184.1

    PubMed  Article  Google Scholar 

  13. De Kroon H, van Groenendael J, Ehrlén J (2000) Elasticities: a review of methods and model limitations. Ecology 81:607–618. doi:10.1890/0012-9658(2000)081[0607:EAROMA]2.0.CO;2

    Article  Google Scholar 

  14. Easterling MR, Ellner SP, Dixon PM (2000) Size-specific sensitivity: applying a new structured population model. Ecology 81:694–708. doi:10.1890/0012-9658(2000)081[0694:SSSAAN]2.0.CO;2

    Article  Google Scholar 

  15. Ehrlén J, Van Groenendael J (1998) Direct perturbation analysis for better conservation. Conserv Biol 12:470–474. doi:10.1111/j.1523-1739.1998.96420.x

    Article  Google Scholar 

  16. Ellner SP, Rees M (2006) Integral projection models for species with complex demography. Am Nat 167:410–428. doi:10.1086/499438

    PubMed  Article  Google Scholar 

  17. Enright NJ, Franco M, Silvertown J (1995) Comparing plant life-histories using elasticity analysis: the importance of life-span and the number of life-cycle stages. Oecologia 104:79–84. doi:10.1007/BF00365565

    Article  Google Scholar 

  18. Franco M, Silvertown J (2004) A comparative demography of plants based upon elasticities of vital rates. Ecology 85:531–538. doi:10.1890/02-0651

    Article  Google Scholar 

  19. Godínez-Álvarez H, Valverde T, Ortega-Baes P (2003) Demographic trends in the Cactaceae. Bot Rev 69:173–203. doi:10.1663/0006-8101(2003)069[0173:DTITC]2.0.CO;2

    Article  Google Scholar 

  20. Goudie A (2006) The human impact on the natural environment: past, present, and future. Blackwell, Malden

    Google Scholar 

  21. Gray JS (1990) Statistics and the precautionary principle. Mar Pollut Bull 21:174–176

    Article  Google Scholar 

  22. Gross K, Morris WF, Wolosin MS, Doak DF (2006) Modeling vital rates improves estimation of population projection matrices. Popul Ecol 48:79–89. doi:10.1007/s10144-005-0238-8

    Article  Google Scholar 

  23. Haller S (2000) A prudential argument for precaution under uncertainty and high risk. Ethics Environ 5:175–189

    Article  Google Scholar 

  24. Hanson M (2003) The precautionary principle. In: Page EA, Proops J (eds) Environmental thought. Current issues in ecological economics. Edward Elgar, Northampton, pp 125–142

    Google Scholar 

  25. Hegland SJ, Jongejans E, Rydgren K (2010) Investigating the interaction between ungulate grazing and resource effects on Vaccinium myrtillus populations with integral projection models. Oecologia 163:695–706. doi:10.1007/s00442-010-1616-2

    PubMed  Article  Google Scholar 

  26. Heywood VH, Iriondo JM (2003) Plant conservation: old problems, new perspectives. Biol Conserv 113:321–335. doi:10.1016/S0006-3207(03)00121-6

    Article  Google Scholar 

  27. Jiménez-Sierra C, Mandujano MC, Eguiarte LE (2007) Are populations of the candy barrel cactus (Echinocactus platyacanthus) in the desert of Tehuacan, Mexico at risk? Population projection matrix and life table response analysis. Biol Conserv 135:278–292. doi:10.1016/j.biocon.2006.10.038

    Article  Google Scholar 

  28. Jongejans E, Shea K, Skarpaas O, Kelly D, Ellner SP (2011) Importance of individual and environmental variation for invasive species spread: a spatial integral projection model. Ecology 92:86–97. doi:10.1890/09-2226.1

    PubMed  Article  Google Scholar 

  29. Kriebel D, Tickner J, Epstein P, Lemons J, Levins R, Loechler EL, Quinn M, Rudel R, Schettler T, Stoto M (2001) The precautionary principle in environmental science. Environ Health Perspect 109:871–876

    PubMed  Article  CAS  Google Scholar 

  30. Martorell C (2007) Detecting and managing an overgrazing-drought synergism in the threatened Echeveria longissima (Crassulaceae): the role of retrospective demographic analysis. Popul Ecol 49:115–125. doi:10.1007/s10144-006-0027-z

    Article  Google Scholar 

  31. Martorell C, Peters EM (2005) The measurement of chronic disturbance and its effects on the threatened cactus Mammillaria pectinifera. Biol Conserv 124:199–207. doi:10.1016/j.biocon.2005.01.025

    Article  Google Scholar 

  32. Martorell C, Peters EM (2009) Disturbance-response analysis: a method for rapid assessment of the threat to species in disturbed areas. Conserv Biol 23:377–387. doi:10.1111/j.1523-1739.2008.01134.x

    PubMed  Article  Google Scholar 

  33. McAuliffe JR, Sundt PC, Valiente-Banuet A, Casas A, Viveros JL (2001) Pre-columbian soil erosion, persistent ecological changes, and collapse of a subsistence agricultural economy in the semi-arid Tehuacan Valley, Mexico’s ‘Cradle of Maize’. J Arid Environ 47:47–75. doi:10.1006/jare.2000.0691

    Article  Google Scholar 

  34. McGarvey DJ (2007) Merging precaution with sound science under the endangered species act. Bioscience 57:65–70. doi:10.1641/B570110

    Article  Google Scholar 

  35. Metcalf JE, Horvitz CC, Tuljapurkar S, Clark DA (2009) A time to grow and a time to die: a new way to analyze the dynamics of size, light, age, and death of tropical trees. Ecology 90:2766–2778

    Google Scholar 

  36. Pérez-Negrón E, Casas A (2007) Use, extraction rates and spatial availability of plant resources in the Tehuacan-Cuicatlan Valley, Mexico: the case of Santiago Quiotepec, Oaxaca. J Arid Environ 70:356–379. doi:10.1016/j.jaridenv.2006.12.016

    Article  Google Scholar 

  37. R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  38. Ramula S, Rees M, Buckley YM (2009) Integral projection models perform better for small demographic data sets than matrix population models: a case study of two perennial herbs. J Appl Ecol 46:1048–1053. doi:10.1111/j.1365-2664.2009.01706.x

    Article  Google Scholar 

  39. Redford KH, Richter BD (1999) Conservation of biodiversity in a world of use. Conserv Biol 13:1246–1256

    Article  Google Scholar 

  40. Rees M, Ellner SP (2009) Integral projection models for populations in temporally varying environments. Ecol Monogr 79:575–594. doi:10.1890/08-1474.1

    Article  Google Scholar 

  41. Rees M, Rose KE (2002) Evolution of flowering strategies in Oenothera glazioviana: an integral projection model approach. Proc R Soc Lond B 269:1509–1515. doi:10.1098/rspb.2002.2037

    Article  Google Scholar 

  42. Shahabuddin G, Kumar R (2006) Influence of anthropogenic disturbance on bird communities in a tropical dry forest: role of vegetation structure. Anim Conserv 9:404–413. doi:10.1111/j.1469-1795.2006.00051.x

    Article  Google Scholar 

  43. Silvertown J, Franco M, Pisanty I, Mendoza A (1993) Comparative plant demography: relative importance of life-cycle components to the finite rate of increase in woody and herbaceous perennials. J Ecol 81:465–476

    Article  Google Scholar 

  44. Singh SP (1998) Chronic disturbance, a principal cause of environmental degradation in developing countries. Environ Conserv 25:1–2

    Article  CAS  Google Scholar 

  45. Soulé ME, Kohm KA (1989) Research priorities for conservation biology. Island Press, Washington, DC

    Google Scholar 

  46. Ureta C, Martorell C (2009) Identifying the impacts of chronic anthropogenic disturbance on two threatened cacti to provide guidelines for population-dynamics restoration. Biol Conserv 142:1992–2001. doi:10.1016/j.biocon.2008.12.031

    Article  Google Scholar 

  47. Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth’s ecosystems. Science 277:494–499

    Article  CAS  Google Scholar 

  48. Wood SN (2003) Thin plate regression splines. J R Stat Soc B 65:95–114. doi:10.1111/1467-9868.00374

    Article  Google Scholar 

  49. Wood SN (2006) Generalized additive models: an introduction with R. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  50. Zuidema PA, Jongejans E, Chien PD, During HJ, Schieving F (2010) Integral Projection Models for trees: a new parameterization method and a validation of model output. J Ecol 98:345–355. doi:10.1111/j.1365-2745.2009.01626.x

    Article  Google Scholar 

Download references

Acknowledgments

B.A. Santini, C. Ureta, V. Tinoco and A. Martínez-Ballesté helped us during the fieldwork. E.J.G. thanks the National Council of Science and Technology (CoNaCyT) for the grant received during his PhD studies and the Graduate Program in Biological Sciences of the National Autonomous University of Mexico (UNAM). We appreciate the valuable comments provided by two anonymous reviewers. We thank the community of Concepción Buenavista for their invaluable support in allowing us to work on their land. This research was carried out in compliance with the laws of Mexico.

Conflict of interest

We declare that we have no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carlos Martorell.

Additional information

Communicated by Miguel Franco.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

González, E.J., Rees, M. & Martorell, C. Identifying the demographic processes relevant for species conservation in human-impacted areas: does the model matter?. Oecologia 171, 347–356 (2013). https://doi.org/10.1007/s00442-012-2432-7

Download citation

Keywords

  • Human disturbance
  • Integral projection models
  • LTRE
  • Model selection
  • Population dynamics