, Volume 170, Issue 1, pp 233–242 | Cite as

Optimizing size thresholds in a plant–pollinator interaction web: towards a mechanistic understanding of ecological networks

Community ecology - Original research


Using functional traits together with abundance effects strengthens the prediction of interactions between pairs of species in ecological networks. Insights into the way species interact as well as prediction accuracy can be gained when thresholds for trait value combinations that make interactions possible are optimized through model selection. I present novel data of two subalpine plant–pollinator communities and build several stochastic models integrating flower abundance and morphological threshold rules that allow or restrict interactions between species. The number of correctly predicted interactions was highest when thresholds were set so that the insect’s proboscis was not shorter than the nectar-holder depth minus 1–1.6 mm, and not wider than the nectar-holder width minus 0.5 mm. In comparison with models based solely on plant abundance effects, the model incorporating optimized size thresholds better predicted the distribution of the trait differences between plants and insects. This indicates that a mechanistic approach of interaction webs based on optimized size thresholds provides valuable information on community structure. The possible implications for community functioning are discussed.


Functional traits Mutualistic networks Morphology Model selection Plant abundance 

Supplementary material

442_2012_2290_MOESM1_ESM.ods (20 kb)
Supplementary material 1 (ODS 20 kb)
442_2012_2290_MOESM2_ESM.ods (21 kb)
Supplementary material 2 (ODS 21 kb)
442_2012_2290_MOESM3_ESM.odt (13 kb)
Supplementary material 3 (ODT 12 kb)


  1. Alarcón R (2010) Congruence between visitation and pollen-transport networks in a California plant–pollinator community. Oikos 119:35–44CrossRefGoogle Scholar
  2. Alarcón R, Waser NM, Ollerton J (2008) Year-to-year variation in the topology of a plant–pollinator interaction network. Oikos 117:1796–1807CrossRefGoogle Scholar
  3. Bascompte J, Jordano P (2007) Plant–animal mutualistic networks: the architecture of biodiversity. Annu Rev Ecol Evol Syst 38:567–593CrossRefGoogle Scholar
  4. Bascompte J, Jordano P, Olesen J (2006) Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312:431–433PubMedCrossRefGoogle Scholar
  5. Beckerman A, Petchey O, Morin P (2010) Adaptive foragers and community ecology: linking individuals to communities and ecosystems. Funct Ecol 24:1–6CrossRefGoogle Scholar
  6. Bosch J, González AM, Rodrigo A, Navarro D (2009) Plant–pollinator networks: adding the pollinator’s perspective. Ecol Lett 12:409–419PubMedCrossRefGoogle Scholar
  7. Brown JH, Calder WA, Kodric-Brown A (1978) Correlates and consequences of body size in nectar-feeding birds. Am Zool 18:687–700Google Scholar
  8. Burns K (2006) A simple null model predicts fruit-frugivore interactions in a temperate rainforest. Oikos 115:427–432CrossRefGoogle Scholar
  9. Chamberlain S, Holland J (2009) Body size predicts degree in ant–plant mutualistic networks. Funct Ecol 23:196–202CrossRefGoogle Scholar
  10. Csillery K, Blum MG, Francois O, Gaggiotti OE (2010) Approximate Bayesian Computation (ABC) in practice. Trends Ecol Evol 25:410–418PubMedCrossRefGoogle Scholar
  11. Dalsgaard B, González AM, Olesen JM, Ollerton J, Timmermann A, Andersen LH, Tossas AG (2009) Plant–hummingbird interactions in the West Indies: floral specialisation gradients associated with environment and hummingbird size. Oecologia 159:757–766PubMedCrossRefGoogle Scholar
  12. Dormann CF, Gruber B, Fründ J (2008) The bipartite package, version 0.5. R Project for Statistical Computing, Vienna, AustriaGoogle Scholar
  13. Dudareva N, Pichersky E (2006) The biology of floral scent. CRC, New YorkGoogle Scholar
  14. Dupont YL, Padrón B, Olesen JM, Petanidou T (2009) Spatio-temporal variation in the structure of pollination networks. Oikos 118:1261–1269CrossRefGoogle Scholar
  15. Faegri K, Pijl LVD (1966) The principles of pollination ecology. Pergamon, TorontoGoogle Scholar
  16. Fenster C, Armbruster W, Wilson P, Dudash M, Thompson J (2004) Pollination syndromes and floral specialization. Annu Rev Ecol Evol Syst 35:375–403CrossRefGoogle Scholar
  17. Galeano J, Pastor JM, Iriondo JM (2009) Weighted-Interaction Nestedness Estimator (WINE): a new estimator to calculate over frequency matrices. Environ Model Softw 24:1342–1346CrossRefGoogle Scholar
  18. Gómez J, Perfectti F, Bosch J, Camacho J (2009) A geographic mosaic in a generalized plant-pollinator-herbivore system. Ecol Monogr 79:245–263CrossRefGoogle Scholar
  19. Gong Y-B, Huang S-Q (2011) Temporal stability of pollinator preference in an alpine plant community and its implications for the evolution of floral traits. Oecologia 166:671–680PubMedCrossRefGoogle Scholar
  20. Gumbert A, Kunze J, Chittka L (1999) Floral colour diversity in plant communities, bee colour space and a null model. Proc R Soc Lond B 266:1711–1716CrossRefGoogle Scholar
  21. Heinrich B (1975) Energetics of pollination. Annu Rev Ecol Syst 6:139–170CrossRefGoogle Scholar
  22. Herrera C (1987) Components of pollinator ‘quality’: comparative analysis of a diverse insect assemblage. Oikos 50:79–90CrossRefGoogle Scholar
  23. Herrera C, Medrano M, Rey P, Sanchez-Lafuente A, Garcia M, Guitian J, Manzaneda A (2002) Interaction of pollinators and herbivores on plant fitness suggests a pathway for correlated evolution of mutualism- and antagonism-related traits. Proc Natl Acad Sci USA 99:16823–16828PubMedCrossRefGoogle Scholar
  24. Hiei K, Suzuki K (2001) Visitation frequency of Melampyrum roseum var. japonicum (Scrophulariaceae) by three bumble bee species and its relation to pollination efficiency. Can J Bot 79:1167–1174CrossRefGoogle Scholar
  25. Ibanez S, Dötterl S, Anstett M, Baudino S, Caissard J, Gallet C, Després L (2010) The role of volatile organic compounds emitted by globeflowers in the attraction of their specific pollinating flies. New Phytol 188:451–463PubMedCrossRefGoogle Scholar
  26. Johnson SD, Steiner KE (1997) Long-tongued fly pollination and evolution of floral spur length in the Disa draconis complex (Orchidaceae). Evolution 51:45–53CrossRefGoogle Scholar
  27. Jordano P, Bascompte J, Olesen J (2003) Invariant properties in coevolutionary networks of plant–animal interactions. Ecol Lett 6:69–81CrossRefGoogle Scholar
  28. Kobayashi S, Inoue K, Kato M (1999) Mechanism of selection favouring a wide tubular corolla in Campanula punctata. Evolution 53:752–757CrossRefGoogle Scholar
  29. Mason N, Lanoiselee C, Mouillot D, Irz P, Argillier C (2007) Functional characters combined with null models reveal inconsistency in mechanisms of species turnover in lacustrine fish communities. Oecologia 153:441–452PubMedCrossRefGoogle Scholar
  30. McGill B, Enquist B, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185PubMedCrossRefGoogle Scholar
  31. Nandi AK, Mämpel D (1995) An extension of the generalized Gaussian distribution to include asymmetry. J Franklin Inst 332:67–75CrossRefGoogle Scholar
  32. Nattero J, Cocucci AA, Medel R (2010) Pollinator-mediated selection in a specialized pollination system: matches and mismatches across populations. J Evol Biol 23:1957–1968PubMedCrossRefGoogle Scholar
  33. Nilsson L (1988) The evolution of flowers with deep corolla tubes. Nature 334:147–149CrossRefGoogle Scholar
  34. Papaj DR, Lewis AC (1993) Insect learning: ecological and evolutionary perspectives. Chapman & Hall, New YorkGoogle Scholar
  35. Petanidou T, Kallimanis A, Tzanopoulos J, Sgardelis S, Pantis J (2008) Long-term observation of a pollination network: fluctuation in species and interactions, relative invariance of network structure and implications for estimates of specialization. Ecol Lett 11:564–575PubMedCrossRefGoogle Scholar
  36. Petchey O, Beckerman A, Riede J, Warren P (2008) Size, foraging, and food web structure. Proc Natl Acad Sci USA 105:4191–4196PubMedCrossRefGoogle Scholar
  37. Pyke GH (1984) Optimal foraging theory: a critical review. Annu Rev Ecol Syst 15:523–575CrossRefGoogle Scholar
  38. R Development Core Team (2009) R: a language and environment for statistical computing. Vienna, Austria. Available at: http://www.R-project.org
  39. Rezende E, Lavabre J, Guimaraes P, Jordano P, Bascompte J (2007) Non-random coextinctions in phylogenetically structured mutualistic networks. Nature 448:925–928PubMedCrossRefGoogle Scholar
  40. Rodriguez-Girones M, Santamaria L (2006) Models of optimal foraging and resource partitioning: deep corollas for long tongues. Behav Ecol 17:905–910CrossRefGoogle Scholar
  41. Rodríguez-Gironés MA, Santamaría L (2007) Resource competition, character displacement, and the evolution of deep corolla tubes. Am Nat 170:455–464PubMedCrossRefGoogle Scholar
  42. Rohr RP, Scherer H, Kehrli P, Mazza C, Bersier L (2010) Modelling food webs: exploring unexplained structure using latent traits. Am Nat 176:170–177PubMedCrossRefGoogle Scholar
  43. Safa SB, Jones BMG, Musselman LJ (1984) Mechanisms favouring outbreeding in Striga hermonthica (Scrophulariaceae). New Phytol 96:299–305CrossRefGoogle Scholar
  44. Santamaría L, Rodríguez-Gironés MA (2007) Linkage rules for plant–pollinator networks: trait complementarity or exploitation barriers? PLoS Biol 5:e31PubMedCrossRefGoogle Scholar
  45. Stang M, Klinkhamer P, van der Meijden E (2006) Size constraints and flower abundance determine the number of interactions in a plant-flower visitor web. Oikos 112:111–121CrossRefGoogle Scholar
  46. Stang M, Klinkhamer P, van der Meijden E (2007) Asymmetric specialization and extinction risk in plant-flower visitor webs: a matter of morphology or abundance? Oecologia 151:442–453PubMedCrossRefGoogle Scholar
  47. Stang M, Klinkhamer P, Waser N, Stang I, van der Meijden E (2009) Size-specific interaction patterns and size matching in a plant–pollinator interaction web. Ann Bot 103:1459–1469PubMedCrossRefGoogle Scholar
  48. Thébault E, Fontaine C (2008) Does asymmetric specialization differ between mutualistic and trophic networks? Oikos 117:555–563CrossRefGoogle Scholar
  49. Tylianakis JM, Tscharntke T, Lewis O (2007) Habitat modification alters the structure of tropical host-parasitoid food webs. Nature 445:202–205PubMedCrossRefGoogle Scholar
  50. Ulrich W, Almeida-Neto M, Gotelli NJ (2009) A consumer’s guide to nestedness analysis. Oikos 118:3–17CrossRefGoogle Scholar
  51. Vargas P, Ornosa C, Ortiz-Sanchez FJ, Arroyo J (2010) Is the occluded corolla of Antirrhinum bee-specialized? J Nat Hist 44:1427–1443CrossRefGoogle Scholar
  52. Vázquez DP, Aizen M (2003) Null model analyses of specialization in plant–pollinator interactions. Ecology 84:2493–2501CrossRefGoogle Scholar
  53. Vázquez D, Chacoff N, Cagnolo L (2009) Evaluating multiple determinants of the structure of plant–animal mutualistic networks. Ecology 90:2039–2046PubMedCrossRefGoogle Scholar
  54. Waser NM (1986) Flower constancy: definition, cause, and measurement. Am Nat 127:593–603CrossRefGoogle Scholar
  55. Waser NM, Ollerton J (2006) Plant–pollinator interactions: from specialisation to generalisation. Chicago University Press, ChicagoGoogle Scholar
  56. Wood SN (2004) Stable and efficient multiple smoothing parameter estimation for Generalised Additive Models. J Am Stat Assoc 99:673CrossRefGoogle Scholar
  57. Woodward G, Hildrew AG (2002) Body-size determinants of niche overlap and intraguild predation within a complex food web. J Anim Ecol 71:1063–1074CrossRefGoogle Scholar
  58. Woodward G, Ebenman B, Emmerson M, Montoya JM, Olesen JM, Valido A, Warren PH (2005) Body size in ecological networks. Trends Ecol Evol 20:402–409PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Ecosystem Boundaries Research UnitSwiss Federal Research Institute WSLBellinzonaSwitzerland
  2. 2.Laboratoire d’Ecologie AlpineUMR CNRS 5553, Université Joseph FourierGrenoble Cedex 9France
  3. 3.Station Alpine Joseph FourierUMS CNRS 2925, Université Joseph FourierGrenobleFrance

Personalised recommendations