Skip to main content
Log in

Optimizing size thresholds in a plant–pollinator interaction web: towards a mechanistic understanding of ecological networks

  • Community ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Using functional traits together with abundance effects strengthens the prediction of interactions between pairs of species in ecological networks. Insights into the way species interact as well as prediction accuracy can be gained when thresholds for trait value combinations that make interactions possible are optimized through model selection. I present novel data of two subalpine plant–pollinator communities and build several stochastic models integrating flower abundance and morphological threshold rules that allow or restrict interactions between species. The number of correctly predicted interactions was highest when thresholds were set so that the insect’s proboscis was not shorter than the nectar-holder depth minus 1–1.6 mm, and not wider than the nectar-holder width minus 0.5 mm. In comparison with models based solely on plant abundance effects, the model incorporating optimized size thresholds better predicted the distribution of the trait differences between plants and insects. This indicates that a mechanistic approach of interaction webs based on optimized size thresholds provides valuable information on community structure. The possible implications for community functioning are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alarcón R (2010) Congruence between visitation and pollen-transport networks in a California plant–pollinator community. Oikos 119:35–44

    Article  Google Scholar 

  • Alarcón R, Waser NM, Ollerton J (2008) Year-to-year variation in the topology of a plant–pollinator interaction network. Oikos 117:1796–1807

    Article  Google Scholar 

  • Bascompte J, Jordano P (2007) Plant–animal mutualistic networks: the architecture of biodiversity. Annu Rev Ecol Evol Syst 38:567–593

    Article  Google Scholar 

  • Bascompte J, Jordano P, Olesen J (2006) Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312:431–433

    Article  PubMed  CAS  Google Scholar 

  • Beckerman A, Petchey O, Morin P (2010) Adaptive foragers and community ecology: linking individuals to communities and ecosystems. Funct Ecol 24:1–6

    Article  Google Scholar 

  • Bosch J, González AM, Rodrigo A, Navarro D (2009) Plant–pollinator networks: adding the pollinator’s perspective. Ecol Lett 12:409–419

    Article  PubMed  Google Scholar 

  • Brown JH, Calder WA, Kodric-Brown A (1978) Correlates and consequences of body size in nectar-feeding birds. Am Zool 18:687–700

    Google Scholar 

  • Burns K (2006) A simple null model predicts fruit-frugivore interactions in a temperate rainforest. Oikos 115:427–432

    Article  Google Scholar 

  • Chamberlain S, Holland J (2009) Body size predicts degree in ant–plant mutualistic networks. Funct Ecol 23:196–202

    Article  Google Scholar 

  • Csillery K, Blum MG, Francois O, Gaggiotti OE (2010) Approximate Bayesian Computation (ABC) in practice. Trends Ecol Evol 25:410–418

    Article  PubMed  Google Scholar 

  • Dalsgaard B, González AM, Olesen JM, Ollerton J, Timmermann A, Andersen LH, Tossas AG (2009) Plant–hummingbird interactions in the West Indies: floral specialisation gradients associated with environment and hummingbird size. Oecologia 159:757–766

    Article  PubMed  Google Scholar 

  • Dormann CF, Gruber B, Fründ J (2008) The bipartite package, version 0.5. R Project for Statistical Computing, Vienna, Austria

  • Dudareva N, Pichersky E (2006) The biology of floral scent. CRC, New York

    Google Scholar 

  • Dupont YL, Padrón B, Olesen JM, Petanidou T (2009) Spatio-temporal variation in the structure of pollination networks. Oikos 118:1261–1269

    Article  Google Scholar 

  • Faegri K, Pijl LVD (1966) The principles of pollination ecology. Pergamon, Toronto

    Google Scholar 

  • Fenster C, Armbruster W, Wilson P, Dudash M, Thompson J (2004) Pollination syndromes and floral specialization. Annu Rev Ecol Evol Syst 35:375–403

    Article  Google Scholar 

  • Galeano J, Pastor JM, Iriondo JM (2009) Weighted-Interaction Nestedness Estimator (WINE): a new estimator to calculate over frequency matrices. Environ Model Softw 24:1342–1346

    Article  Google Scholar 

  • Gómez J, Perfectti F, Bosch J, Camacho J (2009) A geographic mosaic in a generalized plant-pollinator-herbivore system. Ecol Monogr 79:245–263

    Article  Google Scholar 

  • Gong Y-B, Huang S-Q (2011) Temporal stability of pollinator preference in an alpine plant community and its implications for the evolution of floral traits. Oecologia 166:671–680

    Article  PubMed  Google Scholar 

  • Gumbert A, Kunze J, Chittka L (1999) Floral colour diversity in plant communities, bee colour space and a null model. Proc R Soc Lond B 266:1711–1716

    Article  Google Scholar 

  • Heinrich B (1975) Energetics of pollination. Annu Rev Ecol Syst 6:139–170

    Article  Google Scholar 

  • Herrera C (1987) Components of pollinator ‘quality’: comparative analysis of a diverse insect assemblage. Oikos 50:79–90

    Article  Google Scholar 

  • Herrera C, Medrano M, Rey P, Sanchez-Lafuente A, Garcia M, Guitian J, Manzaneda A (2002) Interaction of pollinators and herbivores on plant fitness suggests a pathway for correlated evolution of mutualism- and antagonism-related traits. Proc Natl Acad Sci USA 99:16823–16828

    Article  PubMed  CAS  Google Scholar 

  • Hiei K, Suzuki K (2001) Visitation frequency of Melampyrum roseum var. japonicum (Scrophulariaceae) by three bumble bee species and its relation to pollination efficiency. Can J Bot 79:1167–1174

    Article  Google Scholar 

  • Ibanez S, Dötterl S, Anstett M, Baudino S, Caissard J, Gallet C, Després L (2010) The role of volatile organic compounds emitted by globeflowers in the attraction of their specific pollinating flies. New Phytol 188:451–463

    Article  PubMed  CAS  Google Scholar 

  • Johnson SD, Steiner KE (1997) Long-tongued fly pollination and evolution of floral spur length in the Disa draconis complex (Orchidaceae). Evolution 51:45–53

    Article  Google Scholar 

  • Jordano P, Bascompte J, Olesen J (2003) Invariant properties in coevolutionary networks of plant–animal interactions. Ecol Lett 6:69–81

    Article  Google Scholar 

  • Kobayashi S, Inoue K, Kato M (1999) Mechanism of selection favouring a wide tubular corolla in Campanula punctata. Evolution 53:752–757

    Article  Google Scholar 

  • Mason N, Lanoiselee C, Mouillot D, Irz P, Argillier C (2007) Functional characters combined with null models reveal inconsistency in mechanisms of species turnover in lacustrine fish communities. Oecologia 153:441–452

    Article  PubMed  Google Scholar 

  • McGill B, Enquist B, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185

    Article  PubMed  Google Scholar 

  • Nandi AK, Mämpel D (1995) An extension of the generalized Gaussian distribution to include asymmetry. J Franklin Inst 332:67–75

    Article  Google Scholar 

  • Nattero J, Cocucci AA, Medel R (2010) Pollinator-mediated selection in a specialized pollination system: matches and mismatches across populations. J Evol Biol 23:1957–1968

    Article  PubMed  CAS  Google Scholar 

  • Nilsson L (1988) The evolution of flowers with deep corolla tubes. Nature 334:147–149

    Article  Google Scholar 

  • Papaj DR, Lewis AC (1993) Insect learning: ecological and evolutionary perspectives. Chapman & Hall, New York

    Google Scholar 

  • Petanidou T, Kallimanis A, Tzanopoulos J, Sgardelis S, Pantis J (2008) Long-term observation of a pollination network: fluctuation in species and interactions, relative invariance of network structure and implications for estimates of specialization. Ecol Lett 11:564–575

    Article  PubMed  Google Scholar 

  • Petchey O, Beckerman A, Riede J, Warren P (2008) Size, foraging, and food web structure. Proc Natl Acad Sci USA 105:4191–4196

    Article  PubMed  CAS  Google Scholar 

  • Pyke GH (1984) Optimal foraging theory: a critical review. Annu Rev Ecol Syst 15:523–575

    Article  Google Scholar 

  • R Development Core Team (2009) R: a language and environment for statistical computing. Vienna, Austria. Available at: http://www.R-project.org

  • Rezende E, Lavabre J, Guimaraes P, Jordano P, Bascompte J (2007) Non-random coextinctions in phylogenetically structured mutualistic networks. Nature 448:925–928

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Girones M, Santamaria L (2006) Models of optimal foraging and resource partitioning: deep corollas for long tongues. Behav Ecol 17:905–910

    Article  Google Scholar 

  • Rodríguez-Gironés MA, Santamaría L (2007) Resource competition, character displacement, and the evolution of deep corolla tubes. Am Nat 170:455–464

    Article  PubMed  Google Scholar 

  • Rohr RP, Scherer H, Kehrli P, Mazza C, Bersier L (2010) Modelling food webs: exploring unexplained structure using latent traits. Am Nat 176:170–177

    Article  PubMed  Google Scholar 

  • Safa SB, Jones BMG, Musselman LJ (1984) Mechanisms favouring outbreeding in Striga hermonthica (Scrophulariaceae). New Phytol 96:299–305

    Article  Google Scholar 

  • Santamaría L, Rodríguez-Gironés MA (2007) Linkage rules for plant–pollinator networks: trait complementarity or exploitation barriers? PLoS Biol 5:e31

    Article  PubMed  Google Scholar 

  • Stang M, Klinkhamer P, van der Meijden E (2006) Size constraints and flower abundance determine the number of interactions in a plant-flower visitor web. Oikos 112:111–121

    Article  Google Scholar 

  • Stang M, Klinkhamer P, van der Meijden E (2007) Asymmetric specialization and extinction risk in plant-flower visitor webs: a matter of morphology or abundance? Oecologia 151:442–453

    Article  PubMed  Google Scholar 

  • Stang M, Klinkhamer P, Waser N, Stang I, van der Meijden E (2009) Size-specific interaction patterns and size matching in a plant–pollinator interaction web. Ann Bot 103:1459–1469

    Article  PubMed  Google Scholar 

  • Thébault E, Fontaine C (2008) Does asymmetric specialization differ between mutualistic and trophic networks? Oikos 117:555–563

    Article  Google Scholar 

  • Tylianakis JM, Tscharntke T, Lewis O (2007) Habitat modification alters the structure of tropical host-parasitoid food webs. Nature 445:202–205

    Article  PubMed  CAS  Google Scholar 

  • Ulrich W, Almeida-Neto M, Gotelli NJ (2009) A consumer’s guide to nestedness analysis. Oikos 118:3–17

    Article  Google Scholar 

  • Vargas P, Ornosa C, Ortiz-Sanchez FJ, Arroyo J (2010) Is the occluded corolla of Antirrhinum bee-specialized? J Nat Hist 44:1427–1443

    Article  Google Scholar 

  • Vázquez DP, Aizen M (2003) Null model analyses of specialization in plant–pollinator interactions. Ecology 84:2493–2501

    Article  Google Scholar 

  • Vázquez D, Chacoff N, Cagnolo L (2009) Evaluating multiple determinants of the structure of plant–animal mutualistic networks. Ecology 90:2039–2046

    Article  PubMed  Google Scholar 

  • Waser NM (1986) Flower constancy: definition, cause, and measurement. Am Nat 127:593–603

    Article  Google Scholar 

  • Waser NM, Ollerton J (2006) Plant–pollinator interactions: from specialisation to generalisation. Chicago University Press, Chicago

    Google Scholar 

  • Wood SN (2004) Stable and efficient multiple smoothing parameter estimation for Generalised Additive Models. J Am Stat Assoc 99:673

    Article  Google Scholar 

  • Woodward G, Hildrew AG (2002) Body-size determinants of niche overlap and intraguild predation within a complex food web. J Anim Ecol 71:1063–1074

    Article  Google Scholar 

  • Woodward G, Ebenman B, Emmerson M, Montoya JM, Olesen JM, Valido A, Warren PH (2005) Body size in ecological networks. Trends Ecol Evol 20:402–409

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

I am very grateful to Marion Lombard for her help during field work and to the entomologists who identified the insects: Félix Amiet (Apoidea), Bernhard Merz (Tephritidae), Cinzia Pradella (Cerambicydae), Jean-Pierre Sarthou (Syrphidae), and Phil Withers (other Diptera), and to the members of the internet forum www.insectes.org for their help with other Coleoptera. I also thank Jon Ågren and two anonymous reviewers for their helpful comments, as well as Silvia Dingwall for her English corrections. This work was funded by an interface LECA grant from CNRS. The experiments comply with the current laws of France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Ibanez.

Additional information

Communicated by Jon Ågren.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibanez, S. Optimizing size thresholds in a plant–pollinator interaction web: towards a mechanistic understanding of ecological networks. Oecologia 170, 233–242 (2012). https://doi.org/10.1007/s00442-012-2290-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-012-2290-3

Keywords

Navigation