, Volume 168, Issue 2, pp 321–333 | Cite as

Diaspore bank of bryophytes in tropical rain forests: the importance of breeding system, phylum and microhabitat

  • Adaíses S. Maciel-SilvaEmail author
  • Ivany Ferraz Marques Válio
  • Håkan Rydin
Physiological ecology - Original Paper


Diaspore banks are crucial for the maintenance and resilience of plant communities, but diaspore banks of bryophytes remain poorly known, especially from tropical ecosystems. This is the first study to focus on the role of diaspore banks of bryophytes in tropical rain forests. Our aim was to test whether microhabitat (substrate type) and species traits (breeding system, phylum) are important in explaining the diaspore bank composition. Using samples cultivated in the laboratory, we assessed the number of species and shoots emerging from bark, decaying wood and soil from two sites of the Atlantic rain forest (montane and sea level) in Brazil by comparing the contribution of species by phylum (mosses, liverworts) and breeding system (monoicous, dioicous). More species emerged from bark (68) and decaying wood (55) than from soil (22). Similar numbers of species were found at both sites. Mosses were more numerous in terms of number of species and shoots, and monoicous species dominated over dioicous species. Substrate pH had only weak effects on shoot emergence. Species commonly producing sporophytes and gemmae had a high contribution to the diaspore banks. These superficial diaspore banks represented the extant vegetation rather well, but held more monoicous species (probably short-lived species) compared to dioicous ones. We propose that diaspore bank dynamics are driven by species traits and microhabitat characteristics, and that short-term diaspore banks of bryophytes in tropical rain forests contribute to fast (re)establishment of species after disturbances and during succession, particularly dioicous mosses investing in asexual reproduction and monoicous mosses investing in sexual reproduction.


Asexual diaspores Establishment Liverworts Mosses Spores 



This research was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes), the Conselho Nacional de Pesquisa e Tecnologia (CNPq), and the State of São Paulo Research Foundation (FAPESP) as part of the Thematic Project Functional Gradient (Process Number 03/1259507), within the BIOTA/FAPESP Program––The Biodiversity Virtual Institute ( COTEC/IF 41.065/2005 and IBAMA/CGEN 093/2005 permits collect. We are grateful to Jan-Peter Frahm, William Buck, Thais F. Vaz-Imbassahy and Nivea D. Santos for help with identification, verification and information about species, and to Adalberto J. Santos and Luciano Pereira for help in the field and laboratory. Sincere thanks to Takashi Muraoka (Laboratório de Fertilidade do Solo, CENA-USP) for nutrient analyses. We thank Heinjo During and Sebastian Sundberg for helpful comments on the manuscript, and Scott Spellerberg for revising the English.

Supplementary material

442_2011_2100_MOESM1_ESM.doc (720 kb)
Supplementary material 1 (DOC 720 kb)


  1. Allen BH, Magill RE (1987) In support of a distinct terminology for bryophyte sexuality. Taxon 36:57–58CrossRefGoogle Scholar
  2. Alves LF, Vieira SA, Scaranello MA, Camargo PB, Santos FAM, Joly CA, Martinelli LA (2010) Forest structure and live aboveground variation along an elevational gradient of tropical Atlantic moist forest (Brazil). For Ecol Manag 30:679–691CrossRefGoogle Scholar
  3. Bisang I (1995) The diaspore bank of hornworts (Anthocerotae, Bryophyta) and its role in the maintenance of populations in cultivated fields. Cryptogam Helv 18:107–116Google Scholar
  4. Bisang I, Piippo S, Hedenäs L (2003) Bryophyte diaspore bank in three Malaysian mountain rainforests. J Bryol 25:68–70CrossRefGoogle Scholar
  5. Cleavitt N (2002) Stress tolerance of rare and common moss species in relation to their occupied environments and asexual dispersal potential. J Ecol 90:785–795CrossRefGoogle Scholar
  6. Cleavitt N (2005) Patterns, hypothesis and processes in the biology of rare bryophytes. Bryologist 108:554–566CrossRefGoogle Scholar
  7. Cornelissen HC, Gradstein SR (1990) On the occurrence of bryophytes and macrolichens in different lowland rain forest types at Mabura Hill, Guyana. Trop Bryol 3:29–35Google Scholar
  8. Costa DP (1999) Epiphytic bryophyte diversity in primary and secondary lowland rainforests in south eastern Brazil. Bryologist 102:320–326CrossRefGoogle Scholar
  9. Costa DP (2009) Briófitas. In: Stehmann JR, Forzza RC, Salino A, Sobral M, Costa DP, Kamino LHY (eds) Plantas da Floresta Atlântica. Jardim Botânico do Rio de Janeiro, Rio de Janeiro, pp 13–17Google Scholar
  10. Crandall-Stotler B, Stotler RE, Long DG (2008) Morphology and classification of the Marchantiophyta. In: Goffinet B, Shaw J (eds) Bryophyte Biology. Cambridge University Press, Cambridge, pp 1–54Google Scholar
  11. Crawford M, Jesson LK, Garnock-Jones PJ (2009) Correlated evolution of asexual system and life-history traits in mosses. Evolution 63:1129–1142PubMedCrossRefGoogle Scholar
  12. During HJ (1979) Life strategies of bryophytes: a preliminary review. Lindbergia 5:2–18Google Scholar
  13. During HJ (1997) Bryophyte diaspore banks. Adv Bryol 6:103–134Google Scholar
  14. During HJ (2007) Episodic bryophytes in the diaspore bank of a Zimbabwean savanna. Lindbergia 32:55–61Google Scholar
  15. During HJ, Brugués M, Cros RM, Lloret F (1987) The diaspore bank of bryophytes and ferns in the soil in some contrasting habitats around Barcelona, Spain. Lindbergia 13:137–149Google Scholar
  16. Egunyomi A (1978) Comparative culture studies on the spores and gemmae of Octoblepharum albidum Hedw. J Hattori Bot Lab 44:25–30Google Scholar
  17. Farmer AM, Bates JW, Bell JNB (1990) A comparison of methods from measurement of bark. Lichenologist 22:191–197CrossRefGoogle Scholar
  18. Frahm J-P (2008) Diversity, dispersal and biogeography of bryophytes (mosses). Biodivers Conserv 17:277–284CrossRefGoogle Scholar
  19. Frahm J-P, Gradstein SR (1991) An altitudinal zonation of tropical rain forests using bryophytes. J Biogeogr 18:669–678CrossRefGoogle Scholar
  20. Goffinet B, William BR, Shaw J (2008) Morphology, anatomy, and classification of the Bryophyta. In: Goffinet B, Shaw J (eds) Bryophyte Biology. Cambridge University Press, Cambridge, pp 55–138Google Scholar
  21. Gradstein SR, Churchill SP, Salazar Allen N (2001) Guide to the Bryophytes of Tropical America. Mem N Y Bot Gard 86:1–577Google Scholar
  22. Jonsson BG (1993) The bryophyte diaspore bank and its role after small-scale disturbance in a boreal forest. J Veg Sci 4:819–826CrossRefGoogle Scholar
  23. Laaka-Lindberg S, Hedderson TA, Longton RE (2000) Rarity and reproductive characteristics in the British hepatic flora. Lindbergia 25:78–84Google Scholar
  24. Lloyd RM, Klekowski EJ Jr (1970) Spore germination and viability in Pteridophyta: evolutionary significance of chlorophyllous spores. Biotropica 2:129–137CrossRefGoogle Scholar
  25. Löbel S, Rydin H (2009) Dispersal and life-history strategies in epiphyte metacommunities: alternative solutions to survival in patchy, dynamic landscapes. Oecologia 161:569–579PubMedCrossRefGoogle Scholar
  26. Löbel S, Rydin H (2010) Trade-offs and habitat constraints in the establishment of epiphytic bryophytes. Funct Ecol 24:887–897CrossRefGoogle Scholar
  27. Longton RE (1992) Reproduction and rarity in British mosses. Biol Conserv 59:89–98CrossRefGoogle Scholar
  28. Maciel da Silva AS, Lins-Silva FC (2007) Banco de diásporos de pteridófitas e briófitas de um fragmento de Floresta Atlântica Nordestina (PE). Rev Bras Biocienc 5:273–275Google Scholar
  29. Maciel da Silva AS, Simabukuro EA, Pôrto KC (2006) Morfogênese protonemática de briófitas ocorrentes em Remanescentes de Floresta Atlântica do estado de Pernambuco, Brasil. Bol Inst Bot 18:213–227Google Scholar
  30. Maciel da Silva AS, Pôrto KC, Simabukuro EA (2009) Effect of light and water availability on spore germination and protonemal growth of the Neotropical moss Thamniopsis incurva (Pilotrichaceae). Cryptogam Bryol 30:243–257Google Scholar
  31. Miles CJ, Longton RE (1990) The role of spores in reproduction in mosses. Bot J Linn Soc 104:149–173CrossRefGoogle Scholar
  32. Miles CJ, Longton RE (1992) Deposition of moss spores in relation to distance from parent gametophytes. J Bryol 17:355–368Google Scholar
  33. Nehira K (1983) Spore germination, protonema development and sporeling development. In: Schuster RM (ed) New Manual of Bryology. The Hattori Botanical Laboratory, Nichinan, pp 343–379Google Scholar
  34. Oliveira SM, Pôrto KC (1998) Reprodução sexuada em musgos acrocárpicos do Estado de Pernambuco, Brasil. Acta Bot Bras 12:385–392CrossRefGoogle Scholar
  35. Parsons JG, Cairns A, Johnson CN, Robson SKA, Shilton LA, Westcott DA (2007) Bryophyte dispersal by flying foxes: a novel discovery. Oecologia 152:112–114PubMedCrossRefGoogle Scholar
  36. Plataforma de coleta de dados, Centro de Previsão de Tempo e Estudos Climáticos––CPTEC/INPE (2010). Accessed on January 2010
  37. Pohjamo M, Laaka-Lindberg S, Ovaskainen O, Korpelainen H (2006) Dispersal potential of spores and asexual propagules in the epixylic hepatic Anastrophyllum hellerianum. Evol Ecol 20:415–430CrossRefGoogle Scholar
  38. Pôrto KC, Oliveira S (2002) Reproductive phenology of Octoblepharum albidum (Bryopsida, Leucobryaceae) in a tropical lowland forest of north-eastern Brazil. J Bryol 24:291–294CrossRefGoogle Scholar
  39. Proctor MCF, Oliver MJ, Wood AJ, Alpert P, Stark LR, Cleavitt NL, Mishler BD (2007) Desiccation tolerance in bryophytes: a review. Bryologist 110:595–621CrossRefGoogle Scholar
  40. Pyle C, Brown MM (1999) Heterogeneity of wood decay classes within hardwood logs. For Ecol Manag 114:253–259CrossRefGoogle Scholar
  41. Ross-Davis A, Frego KA (2004) Propagule sources of forest bryophytes: spatiotemporal compositional patterns. Bryologist 107:88–97CrossRefGoogle Scholar
  42. Rudolphi J (2009) Ant-mediated dispersal of asexual moss propagules. Bryologist 112:73–79CrossRefGoogle Scholar
  43. Santos ND, Costa DP (2008) A importância de Reservas Particulares do Patrimônio Natural para a conservação da brioflora da Mata Atlântica: um estudo em El Nagual, Magé, RJ, Brasil. Acta Bot Bras 22:359–372CrossRefGoogle Scholar
  44. Schofield WB (1981) Ecological significance of morphological characters in the moss gametophyte. Bryologist 84:149–165CrossRefGoogle Scholar
  45. Schofield WB (1985) Introduction to bryology. Macmillan, New YorkGoogle Scholar
  46. Setzer J (1966) Atlas climatológico do estado de São Paulo. Comissão Interestadual da Bacia do Paraná-Paraguai––CESP, São PauloGoogle Scholar
  47. Silva FC (1999) Manual de análises químicas de solo plantas e fertilizantes. Empresa Brasileira de Pesquisa agropecuária––Embrapa, BrasíliaGoogle Scholar
  48. Stehmann JR, Forzza RC, Salino A, Sobral M, Costa DP, Kamino LHY (2009) Diversidade taxonômica na Floresta Atlântica. In: Stehmann JR, Forzza RC, Salino A, Sobral M, Costa DP, Kamino LHY (eds) Plantas da Floresta Atlântica. Jardim Botânico do Rio de Janeiro, Rio de Janeiro, pp 3–12Google Scholar
  49. Sundberg S (2005) Larger capsules enhance short-range spore dispersal in Sphagnum, but what happens further away? Oikos 108:115–124CrossRefGoogle Scholar
  50. Sundberg S, Rydin H (2000) Experimental evidence for a persistent spore bank in Sphagnum. New Phytol 148:105–116CrossRefGoogle Scholar
  51. Tabarelli M, Pinto LP, Silva JMC, Hirota M, Bede L (2005) Challenges and opportunities for biodiversity conservation in the Brazilian Atlantic forest. Conserv Biol 19:695–700CrossRefGoogle Scholar
  52. ter Steege H, Cornelissen JHC (1989) Distribution and ecology of vascular epiphytes in lowland rain forest of Guyana. Biotropica 21:331–339CrossRefGoogle Scholar
  53. Thomas PA, Proctor MCF, Maltby E (1994) The ecology of severe moorland fire on the North York Moors: chemical and physical constraints on moss establishment from spores. J Ecol 82:457–474CrossRefGoogle Scholar
  54. Thompson K (2000) The functional ecology of soil seed banks. In: Fenner M (ed) Seeds: the ecology of regeneration in plant communities. CAB International, Wallingford, pp 215–235CrossRefGoogle Scholar
  55. Turetsky MR (2003) The role of bryophytes in carbon and nitrogen cycling. Bryologist 106:395–409CrossRefGoogle Scholar
  56. Veloso HP, Rangel Filho ALR, Lima JCA (1991) Classificação da Vegetação Brasileira Adaptada a um Sistema Universal. IBGE, Departamento de Recursos Naturais e Estudos Ambientais, BrazilGoogle Scholar
  57. Visnadi SR (2005) Brioflora da Mata Atlântica do estado de São Paulo: região norte. Hoehnea 32:215–231Google Scholar
  58. Wiklund K, Rydin H (2004) Ecophysiological constraints on spore establishment in bryophytes. Funct Ecol 18:907–913CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Adaíses S. Maciel-Silva
    • 1
    Email author
  • Ivany Ferraz Marques Válio
    • 1
  • Håkan Rydin
    • 2
  1. 1.Departamento de Botânica, Instituto de Biologia, CP 6109Universidade Estadual de Campinas-UNICAMPCampinasBrazil
  2. 2.Department of Plant Ecology, Evolutionary Biology CentreUppsala UniversityUppsalaSweden

Personalised recommendations