, Volume 167, Issue 3, pp 835–845 | Cite as

Bromeliad growth and stoichiometry: responses to atmospheric nutrient supply in fog-dependent ecosystems of the hyper-arid Atacama Desert, Chile

  • Angélica L. GonzálezEmail author
  • José Miguel Fariña
  • Raquel Pinto
  • Cecilia Pérez
  • Kathleen C. Weathers
  • Juan J. Armesto
  • Pablo A. Marquet
Ecosystem ecology - Original Paper


Carbon, nitrogen, and phosphorus (C, N, P) stoichiometry influences the growth of plants and nutrient cycling within ecosystems. Indeed, elemental ratios are used as an index for functional differences between plants and their responses to natural or anthropogenic variations in nutrient supply. We investigated the variation in growth and elemental content of the rootless terrestrial bromeliad Tillandsia landbeckii, which obtains its moisture, and likely its nutrients, from coastal fogs in the Atacama Desert. We assessed (1) how fog nutrient supply influences plant growth and stoichiometry and (2) the response of plant growth and stoichiometry to variations in nutrient supply by using reciprocal transplants. We hypothesized that T. landbeckii should exhibit physiological and biochemical plastic responses commensurate with nutrient supply from atmospheric deposition. In the case of the Atacama Desert, nutrient supply from fog is variable over space and time, which suggests a relatively high variation in the growth and elemental content of atmospheric bromeliads. We found that the nutrient content of T. landbeckii showed high spatio-temporal variability, driven partially by fog nutrient deposition but also by plant growth rates. Reciprocal transplant experiments showed that transplanted individuals converged to similar nutrient content, growth rates, and leaf production of resident plants at each site, reflecting local nutrient availability. Although plant nutrient content did not exactly match the relative supply of N and P, our results suggest that atmospheric nutrient supply is a dominant driver of plant growth and stoichiometry. In fact, our results indicate that N uptake by T. landbeckii plants depends more on N supplied by fog, whereas P uptake is mainly regulated by within-plant nutrient demand for growth. Overall, these findings indicate that variation in fog nutrient supply exerts a strong control over growth and nutrient dynamics of atmospheric plants, which are ubiquitous across fog-dominated ecosystems.


Atmospheric deposition Ephiphytes Growth rate Nitrogen Nutrient ratios Nutrient supply Phosphorus 



We thank Carlos Garín, Martín Escobar, Margarita Ruíz, Sebastián Armesto, and Moisés Aguilera for helping with field sampling. Comments from Claudio Latorre and Marcia Kyle improved the manuscript. This project was funded by FONDECYT-FONDAP 1501-0001 (Programs 3 and 4), by FONDECYT 3090029, by CONICYT 24050045, by FONDECYT 1040783/2004, by a grant from Mideplan (Millennium Scientific Initiative) to the Instituto de Ecologia y Biodiversidad (ICM P05-002), and by Contract PFB-23, Conicyt, Chile.

Supplementary material

442_2011_2032_MOESM1_ESM.pdf (128 kb)
Supplementary material 1 (PDF 128 kb)


  1. Abril AB, Bucher EH (2009) A comparison of nutrient sources of the epiphyte Tillandsia capillaris attached to trees and cables in Cordoba, Argentina. J Arid Environ 73:393–395CrossRefGoogle Scholar
  2. Agam N, Berliner PR (2006) Dew formation and water vapor adsorption in semi-arid environments—a review. J Arid Environ 65:572–590CrossRefGoogle Scholar
  3. Andrade JL (2003) Dew deposition on epiphytic bromeliad leaves: an important event in a Mexican tropical dry deciduous forest. J Trop Ecol 19:479–488CrossRefGoogle Scholar
  4. Ballantyne IVF, Menge DNL, Ostling A (2008) Nutrient recycling affects autotroph and ecosystem stoichiometry. Am Nat 171:511–523PubMedCrossRefGoogle Scholar
  5. Benzing DH (1990) Vascular epiphytes. General biology and related biota. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  6. Benzing DH (2000) Bromeliaceae: profile of an adaptive radiation. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  7. Benzing DH, Renfrow A (1974) The mineral nutrition of Bromeliaceae. Bot Gaz 135:281–288CrossRefGoogle Scholar
  8. Benzing DH, Renfrow A (1980) The nutritional dynamics of Tillandsia circinnata in southern Florida and the origin of the air plant strategy. Bot Gaz 141:165–172CrossRefGoogle Scholar
  9. Borthagaray A, Fuentes MA, Marquet PA (2010) Vegetation pattern formation in a fog-dependent ecosystem. J Theor Biol 7:18–26CrossRefGoogle Scholar
  10. Bott T, Meyer GA, Young EB (2008) Nutrient limitation and morphological plasticity of the carnivorous pitcher plant Sarracenia purpurea in contrasting wetland environments. New Phytol 180:631–641PubMedCrossRefGoogle Scholar
  11. Cavelier J, Goldstein G (1989) Mist and fog interception in elfin cloud forests in Colombia and Venezuela. J Trop Ecol 5:309–322CrossRefGoogle Scholar
  12. Cereceda P, Larrain H, Osses P, Farias M, Egaña I (2008) The spatial and temporal variability of fog and its relation to fog oases in the Atacama Desert, Chile. Atmos Res 87:312–323CrossRefGoogle Scholar
  13. Cervantes SE, Graham EA, Andrade JL (2005) Light microhabitats, growth and photosynthesis of an epiphytic bromeliad in a tropical dry forest. Plant Ecol 179:107–118CrossRefGoogle Scholar
  14. Chapin FS (1980) The mineral nutrition of wild plants. Annu Rev Ecol Syst 11:233–260CrossRefGoogle Scholar
  15. Corbin JD, Thomsen MA, Dawson TE, D’Antonio CA (2005) Summer water use by California coastal prairie grasses: fog, drought, and community composition. Oecologia 145:511–521PubMedCrossRefGoogle Scholar
  16. Cruz A, Moreno JH (2001) Seasonal course of total non-structural carbohydrates in the lignotuberous Mediterranean-type Erica australis. Oecologia 128:343–350CrossRefGoogle Scholar
  17. del-Val E, Armesto JJ, Barbosa O, Christie DA, Gutierrez AG, Jones CG, Marquet PA, Weathers KC (2006) Rain forest islands in the Chilean semiarid region: fog-dependency, ecosystem persistence and tree regeneration. Ecosystems 9:598–608CrossRefGoogle Scholar
  18. Derry LA, Chadwick OA (2007) Contributions from earth’s atmosphere to soil. Elements 3:333–338CrossRefGoogle Scholar
  19. Dickman EM, Vanni MJ, Horgan MJ (2006) Interactive effects of light and nutrients on phytoplankton stoichiometry. Oecologia 149:676–689PubMedCrossRefGoogle Scholar
  20. Diehl S, Berger S, Wohrl R (2005) Flexible nutrient stoichiometry mediates environmental influences, on phytoplankton and its resources. Ecology 86:2931–2945CrossRefGoogle Scholar
  21. Dodds WK, Martí E, Tank JLJ, Pontius J, Hamilton S, Grimm N, Bowden W, McDowell W, Peterson B, Valett H, Webster J, Gregory S (2004) Carbon and nitrogen stoichiometry and nitrogen cycling rates in streams. Oecologia 140:458–467PubMedCrossRefGoogle Scholar
  22. Elser JJ, Fagan WF, Denno R, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley E, Schulz KL, Siemann EH, Sterner RW (2000) Nutritional constraints in terrestrial and freshwater food webs. Nature 408:578–580PubMedCrossRefGoogle Scholar
  23. Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142PubMedCrossRefGoogle Scholar
  24. Elser JJ, Fagan WF, Kerkhoff AJ, Swenson NG, Enquist BJ (2010) Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change. New Phytol 186:593–608PubMedCrossRefGoogle Scholar
  25. Evans-White MA, Lamberti GA (2006) Stoichiometry of consumer-driven nutrient recycling across nutrient regimes in streams. Ecol Lett 9:1186–1197PubMedCrossRefGoogle Scholar
  26. Ewing SA, Sutter B, Amundson R, Owen J, Nishiizumi K, Sharp W, Cliff SS, Perry K, Dietrich W, McKay CP, Amundson R (2006) A threshold in soil formation at earth’s arid-hyperarid transition. Geochim Cosmochim Acta 70:293–5322CrossRefGoogle Scholar
  27. Ewing HA, Weathers KC, Templer PH, Dawson TE, Firestone MK, Elliott AM, Boukili VKS (2009) Fog water and ecosystem function: heterogeneity in a California redwood forest. Ecosystems 12:417–433CrossRefGoogle Scholar
  28. Gradowski T, Thomas SC (2008) Responses of Acer saccharum canopy trees and saplings to P, K and lime additions under high N deposition. Tree Physiol 28:173–185PubMedGoogle Scholar
  29. Graham EA, Andrade JL (2004) Drought tolerance associated with vertical stratification of two co-occurring epiphytic bromeliads in a tropical dry forest. Am J Bot 91:699–706PubMedCrossRefGoogle Scholar
  30. Griffiths H, Smith JAC, Luttge U, Popp M, Cram WJ, Diaz M, Lee HSJ, Medina E, Schafer C, Stimmel CKH (1989) Ecophysiology of xerophytic and halophytic vegetation of a coastal alluvial plain in northern Venezuela. IV. Tillandsia flexuosa Sw. and Schomburgkia humboldtiana Reichb. epiphytic CAM. New Phytol 111:273–282CrossRefGoogle Scholar
  31. Grime JP (2001) Plant strategies, vegetation processes, and ecosystem properties. John Wiley, ChichesterGoogle Scholar
  32. Guevara-Escobar A, Cervantes-Jiménez M, Suzán-Azpiri H, González-Sosa E, Hernández-Sandoval L, Malda-Barrera G, Martínez-Díaz M (2010) Fog interception by Ball moss (Tillandsia recurvata). Hydrol Earth Syst Sci Discuss 7:1655–1676CrossRefGoogle Scholar
  33. Güsewell S (2004) N:P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–266CrossRefGoogle Scholar
  34. Hall SR, Smith VH, Lytle DA, Leibold MA (2005) Constraints on primary producer N:P stoichiometry along N:P supply ratio gradients. Ecology 86:1894–1904CrossRefGoogle Scholar
  35. Herut B, Collier R, Krom MD (2002) The role of dust in supplying nitrogen and phosphorus to the Southeast Mediterranean. Limnol Oceanogr 47:870–878CrossRefGoogle Scholar
  36. Hessen DO, Ägren GI, Anderson TR (2004) Carbon sequestration in ecosystems: the role of stoichiometry. Ecology 85:1179–1192CrossRefGoogle Scholar
  37. Husk GJ, Weishampel JF, Schlessinger WH (2004) Mineral dynamics in Spanish moss, Tillandsia usneoides L. (Bromeliaceae), from Central Florida, USA. Sci Total Environ 321:165–172PubMedCrossRefGoogle Scholar
  38. James JJ, Richards JH (2006) Plant nitrogen capture in pulse-driven systems: interactions between root responses and soil processes. J Ecol 94:765–777CrossRefGoogle Scholar
  39. James JJ, Tiller RL, Richards JH (2005) Multiple resources limit plant growth and function in a saline-alkaline desert community. J Ecol 93:113–126CrossRefGoogle Scholar
  40. Lange OL, Green ATG, Melzer B, Meyer A, Zellner H (2006) Water relations and CO2 exchange of the terrestrial lichen Teloschistes capensis in the Namib fog desert: measurements during two seasons in the field and under controlled conditions. Flora 201:268–280CrossRefGoogle Scholar
  41. Lange OL, Green ATG, Meyer A, Zellner H (2007) Water relations and carbon dioxide exchange of epiphytic lichens in the Namib fog desert. Flora 202:479–487CrossRefGoogle Scholar
  42. McGroddy ME, Daufresne T, Hedin LO (2004) Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial Redfield-type ratios. Ecology 85:2390–2401CrossRefGoogle Scholar
  43. Méndez M, Karlsson PS (2005) Nutrient stoichiometry in Pinguicula vulgaris: nutrient availability, plant size, and reproductive status. Ecology 86:982–991CrossRefGoogle Scholar
  44. Michalski G, Böhlke JK, Thiemens M (2004) Long term atmospheric deposition as the source of nitrate and other salts in the Atacama Desert, Chile: new evidence from mass-independent oxygen isotopic compositions. Geochim Cosmochim Acta 68:4023–4028CrossRefGoogle Scholar
  45. Moe JS, Seltzer RS, Forman MR, Harpole S, Daufresne T, Yoshida T (2005) Recent advances in ecological stoichiometry: insights for population and community ecology. Oikos 109:29–39CrossRefGoogle Scholar
  46. Nicotra AB, Hermes JP, Jones CS, Schlichting CD (2007) Geographic variation and plasticity to water and nutrients in Pelargonium australe. New Phytol 176:136–149PubMedCrossRefGoogle Scholar
  47. Niklas K, Owens T, Reich PB, Peter B, Cobb ED (2005) Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth. Ecol Lett 8:636–642CrossRefGoogle Scholar
  48. Okin G, Mahowald N, Chadwick O, Artaxo P (2004) Impact of desert dust on the biogeochemistry of phosphorus in terrestrial ecosystems. Global Biogeochem Cycles 18:1–9CrossRefGoogle Scholar
  49. Pinto R, Barría I, Marquet PA (2006) Geographical distribution of Tillandsia lomas in the Atacama Desert, northern Chile. J Arid Environ 65:543–552CrossRefGoogle Scholar
  50. Ponnete-González AG, Weathers KC, Curran ML (2009) Water inputs across a tropical montane landscape in Veracruz, Mexico: synergistic effects of land cover, rain and fog seasonality, and interannual precipitation variability. Global Change Biol 16:946–963CrossRefGoogle Scholar
  51. Reich PB, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. Proc Natl Acad Sci USA 101:11001–11006PubMedCrossRefGoogle Scholar
  52. Reich A, Ewel JJ, Nadkarni NM, Dawson T, Evans DR (2003) Nitrogen isotope ratios shift with plant size in tropical bromeliads. Oecologia 137:587–590PubMedCrossRefGoogle Scholar
  53. Reyes-García C, Griffiths H, Rincón E, Huante P (2008) Niche differentiation in tank and atmospheric epiphytic bromeliads of a seasonally dry forest. Biotropica 42:168–175Google Scholar
  54. Richardson BA, Richardson MJ, Scatena FN, McDowell WH (2000) Effects of nutrient availability and other elevational changes on bromeliad populations and their invertebrate communities in a humid tropical forest in Puerto Rico. J Trop Ecol 16:167–188CrossRefGoogle Scholar
  55. Ridame C, Guieu C (2002) Saharan input of phosphate to the oligotrophic water of the open western Mediterranean Sea. Limnol Oceanogr 47:856–869CrossRefGoogle Scholar
  56. Rundel PW, Dillon MO, Palma B, Mooney HA, Gulmon SL, Ehleringer JR (1991) The phytogeography and ecology of the coastal Atacama and Peruvian Deserts. Aliso 13:1–49Google Scholar
  57. Rundel PW, Palma B, Dillon M, Sharifi MR, Nilsen ET, Boonpragob K (1997) Tillandsia landbeckii in the coastal Atacama Desert of northern Chile. RCHN 70:341–349Google Scholar
  58. Sadzawka A, Grez R, Mora ML, Saavedra N, Carrasco MA (2001) Métodos de análisis de tejidos vegetales. Comisión de Normalización y Acreditación, Sociedad Chilena de la Ciencia del Suelo, SantiagoGoogle Scholar
  59. Sardans J, Peñuelas J, Rodà F (2006) Plasticity of leaf morphological traits, leaf nutrient content, and water capture in the Mediterranean evergreen oak Quercus ilex subsp. ballota in response to fertilization and changes in competitive conditions. Ecoscience 13:258–270CrossRefGoogle Scholar
  60. Schemenauer RS, Cereceda P (1991) Fog water collection in arid coastal location. Ambio 20:303–308Google Scholar
  61. Schlesinger WH, Marks PL (1977) Mineral cycling and the niche of Spanish moss, Tillandsia usneoides L. Am J Bot 64:1254–1262CrossRefGoogle Scholar
  62. Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, PrincetonGoogle Scholar
  63. Troxler TG (2007) Patterns of phosphorus, nitrogen and 15N along a peat development gradient in a coastal mire, Panama. J Trop Ecol 23:683–691CrossRefGoogle Scholar
  64. Virzo de Santo A, Alfani A, De Luca P (1976) Water vapour uptake from the atmosphere by some Tillandsia species. Ann Bot 40:391–394Google Scholar
  65. Vitousek PM (2004) Nutrient cycling and limitation: Hawaii as a model system. Princeton University Press, PrincetonGoogle Scholar
  66. Wania R, Hietz P, Wanek W (2002) Natural 15N abundance of epiphytes depends on the position within the forest canopy: source signals and isotope fractionation. Plant Cell Environ 25:581–589CrossRefGoogle Scholar
  67. Weathers KC (1999) The importance of cloud and fog in the maintenance of ecosystems. TREE 14:214–215PubMedGoogle Scholar
  68. Weathers KC, Likens GE (1997) Clouds in southern Chile: an important source of nitrogen to nitrogen-limited ecosystems? Environ Sci Technol 31:210–213CrossRefGoogle Scholar
  69. Weathers KC, Lovett GM, Likens GE, Caraco NF (2000) Cloudwater inputs of nitrogen to forest ecosystems in southern Chile: forms, fluxes, and sources. Ecosystems 3:590–595CrossRefGoogle Scholar
  70. Weathers KC, Simkin SM, Lovett GM, Lindberg SE (2006) Empirical modeling of atmospheric deposition in mountainous landscapes. Ecol Appl 16:1590–1607PubMedCrossRefGoogle Scholar
  71. Westbeld A, Klemm O, Grießbaum F, Sträter E, Larrain H, Osses P, Cereceda P (2009) Fog deposition to a Tillandsia carpet in the Atacama Desert. Ann Geophys 27:3571–3576CrossRefGoogle Scholar
  72. Zotz G (1999) What are the backshoots good for? Seasonal changes in mineral, carbohydrate, and water content of different organs of the epiphytic orchid Dimerandra emarginata. Ann Bot 84:791–798CrossRefGoogle Scholar
  73. Zotz G, Asshoff R (2010) Growth in epiphytic bromeliads: response to the relative supply of phosphorus and nitrogen. Plant Biol 12:108–113PubMedCrossRefGoogle Scholar
  74. Zotz G, Hietz P (2001) The physiological ecology of vascular ephiphytes: current knowledge, open questions. J Exp Bot 52:2067–2078PubMedCrossRefGoogle Scholar
  75. Zotz G, Richter A (2006) Changes in carbohydrate and nutrient contents throughout a reproductive cycle indicate that phosphorus is a limiting nutrient in the epiphytic bromeliad, Werauhia sanguinolenta. Ann Bot 97:745–754PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Angélica L. González
    • 1
    • 2
    Email author
  • José Miguel Fariña
    • 1
    • 4
  • Raquel Pinto
    • 5
  • Cecilia Pérez
    • 1
    • 2
  • Kathleen C. Weathers
    • 6
  • Juan J. Armesto
    • 1
    • 2
  • Pablo A. Marquet
    • 1
    • 2
    • 3
  1. 1.Departamento de Ecología, Center for Advanced Studies in Ecology and Biodiversity (CASEB)Pontificia Universidad Católica de ChileSantiagoChile
  2. 2.Institute of Ecology and Biodiversity (IEB)SantiagoChile
  3. 3.The Santa Fe InstituteSanta FeUSA
  4. 4.Department of Ecology and Evolutionary BiologyBrown UniversityProvidenceUSA
  5. 5.Universidad Arturo PratIquiqueChile
  6. 6.Cary Institute of Ecosystem StudiesMillbrookUSA

Personalised recommendations