Skip to main content
Log in

Parasitized snails take the heat: a case of host manipulation?

  • Physiological ecology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Infection-induced changes in a host’s thermal physiology can represent (1) a generalized host response to infection, (2) a pathological side-effect of infection, or (3), provided the parasite’s development is temperature-dependent, a subtle case of host manipulation. This study investigates parasite-induced changes in the thermal biology of a first intermediate host infected by two castrating trematodes (genera Maritrema and Philophthalmus) using laboratory experiments and field surveys. The heat tolerance and temperatures selected by the snail, Zeacumantus subcarinatus, displayed alterations upon infection that differed between the two trematodes. Upon heating, snails infected by Maritrema sustained activity for longer durations than uninfected snails, followed by a more rapid recovery, and selected higher temperatures in a thermal gradient. These snails were also relatively abundant in high shore localities in the summer only, corresponding with seasonal elevated microhabitat temperatures. By contrast, Philophthalmus-infected snails fell rapidly into a coma upon heating and did not display altered thermal preferences. The respective heat tolerance of each trematode corresponded with the thermal responses induced in the snail: Maritrema survived exposure to 40°C, while Philophthalmus was less heat tolerant. Although both trematodes infect the same tissues, Philophthalmus leads to a reduction in the host’s thermal tolerance, a response consistent with a pathological side effect. By contrast, Maritrema induces heat tolerance in the snail and withstood exposure to high heat. As the developmental rate and infectivity of Maritrema increase with temperature up to 25°C, one adaptive explanation for our findings is that Maritrema manipulates the snail’s thermal responses to exploit warm microhabitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bates AE, Hilton BJ, Harley CDG (2009) Effects of temperature, season and locality on wasting disease in the keystone predatory sea star, Pisaster ochraceus. Dis Aquat Org 86:245–251

    Article  PubMed  Google Scholar 

  • Bates AE, Lee RW, Tunnicliffe V, Lamare M (2010) Deep-sea hydrothermal vent animals select cool fluids in a variable thermal environment. Nat Commun 1:14

    Article  PubMed  Google Scholar 

  • Benson BB, Krause D (1984) The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere. Limnol Oceanogr 29:620–632

    Article  CAS  Google Scholar 

  • Bernheim HA, Kluger MJ (1976) Fever and antipyresis in the lizard Dipsosaurus dorsalis. Am J Physiol 231:198–203

    PubMed  CAS  Google Scholar 

  • Bowler K (2005) Acclimation, heat shock and hardening. J Therm Biol 30:125–130

    Article  Google Scholar 

  • Bronstein SM, Conner WE (1984) Endotoxin-induced behavioural fever in the Madagascar cockroach, Gromphadorhina portentosa. J Ins Physiol 30:327–330

    Article  CAS  Google Scholar 

  • Campbell J, Kessler B, Mayack C, Naug D (2010) Behavioural fever in infected honeybees: parasitic manipulation or coincidental benefit? Parasitology 137:1487–1496

    Article  PubMed  Google Scholar 

  • Curtis LA (2003) Tenure of individual larval trematode infections in an estuarine gastropod. J Mar Biol Ass UK 83:1047–1051

    Article  Google Scholar 

  • Elliot SL, Blanford S, Thomas MB (2002) Host–pathogen interactions in a varying environment: temperature, behavioural fever and fitness. Proc R Soc Lond B 269:1599–1607

    Article  Google Scholar 

  • Ewald PW (1980) Evolutionary biology and the treatment of signs and symptoms of infectious disease. J Theor Biol 86:169–176

    Article  PubMed  CAS  Google Scholar 

  • Fialho RF, Schall JJ (1995) Thermal ecology of a malarial parasite and its insect vector: consequences for the parasite’s transmission success. J Anim Ecol 64:553–562

    Article  Google Scholar 

  • Fredensborg BL, Mouritsen KN, Poulin R (2005) Impact of trematodes on host survival and population density in the intertidal gastropod Zeacumantus subcarinatus. Mar Ecol Prog Ser 290:109–117

    Article  Google Scholar 

  • Harvell CD, Kim K, Burkholder JM, Colwell RR, Epstein PR, Grimes DJ, Hofmann EE, Lip EK, Osterhaus ADME, Overstreet RM, Porter JW, Smith GW, Vasta GR (1999) Emerging marine diseases-climate links and anthropogenic factors. Science 285:1505–1510

    Article  PubMed  CAS  Google Scholar 

  • Harvell CD, Mitchell CE, Ward JR, Dobson AP, Ostfeld RS, Samuel MD (2002) Climate warming and disease risks for terrestrial and marine biota. Science 296:2158–2162

    Article  PubMed  CAS  Google Scholar 

  • Hechinger RF, Laffarty KD, Mancini FT, Warner RR, Kuris AM (2009) How large is the hand in the puppet? Ecological and evolutionary factors affecting the body mass of 15 trematode parasitic castrators in their snail host. Evol Ecol 23:651–667

    Article  Google Scholar 

  • Holmes JC, Zohar S (1990) Pathology and host behaviour. In: Barnard CJ, Behnke JM (eds) Parasitism and host behaviour. Taylor and Francis, London, pp 34–63

    Google Scholar 

  • Kavaliers M, Colwell DD (1992) Parasitism, opioid systems and host behaviour. Adv Neuroimmunol 2:287–295

    Article  Google Scholar 

  • Koprivnikar J, Poulin R (2009) Effects of temperature, salinity, and water level on the emergence of marine cercariae. Parasitol Res 105:957–965

    Article  PubMed  Google Scholar 

  • Lauckner G (1980) Diseases of mollusca: gastropoda. In: Kinne O (ed) Diseases of marine animals, vol 1. Wiley, New York, pp 311–324

    Google Scholar 

  • Lauckner G (1983) Diseases of mollusca: bivalvia. In: Kinne O (ed) Diseases of marine animals vol II. Biologische Anstalt Helgoland, Hamburg, pp 477–961

    Google Scholar 

  • Lee FO, Cheng TC (1971) Schistosoma mansoni infection in Biomphalaria glabrata: alterations in heart rate and thermal tolerance in the host. J Invert Pathol 18:412–418

    Article  CAS  Google Scholar 

  • Lefcort H, Bayne CJ (1991) Thermal preferences of resistant and susceptible strains of Biomphalaria glabrata (Gastropoda) exposed to Schistosoma mansoni (Trematoda). Parasitology 103:357–362

    Article  PubMed  Google Scholar 

  • Lefcort H, Eiger SM (1993) Antipredatory behaviour of feverish tadpoles: implications for pathogen transmission. Behaviour 126:13–27

    Article  Google Scholar 

  • Maness JD, Hutchison VH (1980) Acute adjustment of thermal tolerance in vertebrate ectotherms following exposure to critical thermal maxima. J Therm Biol 5:225–233

    Article  Google Scholar 

  • Marshall DJ, McQuaid CD, Williams GA (2010) Non-climatic thermal adaptation: implications for species’ responses to climate warming. Biol Lett 6:669–673

    Article  PubMed  Google Scholar 

  • Martorelli SR, Fredensborg BL, Mouritsen KN, Poulin R (2004) Description and proposed life cycle of Maritrema novaezealandensis n. sp. (Microphallidae) parasitic in red-billed gulls, Larus novaehollandiae scopulinus, from Otago Harbor, South Island, New Zealand. Parasitology 90:272–277

    Article  Google Scholar 

  • Martorelli SR, Fredensborg BL, Leung TLF, Poulin R (2008) Four trematode cercariae from the New Zealand intertidal snail Zeacumantus subcarinatus (Batillariidae). NZ J Zool 35:73–84

    Google Scholar 

  • McDaniel JS (1969) Littorina littorea: lowered heat tolerance due to Cryptocotyle lingua. Exp Parasitol 25:13–15

    Article  PubMed  CAS  Google Scholar 

  • McMahon RF (1976) Effluent-induced interpopulation variation in the thermal tolerance of Physa virgata Gould. Comp Biochem Physiol 55A:23–28

    Article  Google Scholar 

  • Minchella DJ (1985) Host life-history variation in response to parasitism. Parasitology 90:205–216

    Article  Google Scholar 

  • Moore J, Freehling M (2002) Cockroach hosts in thermal gradients suppress parasite development. Oecologia 133:261–266

    Article  Google Scholar 

  • Myhre K, Cabanac M, Myhre G (1997) Fever and behavioural temperature regulation in the frog Rana esculenta. Acta Physiol Scand 101:219–229

    Article  Google Scholar 

  • Pan CT (1965) Studies on the host-parasite relationship between Schistosoma mansoni and the snail Australorbis glabratus. Am J Trop Med Hyg 14:931–976

    PubMed  CAS  Google Scholar 

  • Pörtner HO (2001) Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88:137–146

    Article  PubMed  Google Scholar 

  • Poulin R (2010) Parasite manipulation of host behaviour: an update and frequently asked questions. Adv Stud Behav 41:151–186

    Article  Google Scholar 

  • Sousa WP, Gleason M (1989) Does parasitic infection compromise host survival under extreme environmental conditions? The case for Cerithidea californica (Gastropoda: Prosobranchia). Oecologia 80:456–464

    Article  Google Scholar 

  • Studer A, Thieltges DW, Poulin R (2010) Parasites and global warming: net effects of temperature on an intertidal host-parasite system. Mar Ecol Prog Ser 415:11–22

    Article  Google Scholar 

  • Tallmark B, Norrgren G (1976) The influence of parasitic trematodes on the ecology of Nassarius reticulatus (L.) in Gullmar Fjord (Sweden). Zoon 4:149–154

    Google Scholar 

  • Thompson SN, Kavaliers MI (1994) Physiological bases for parasite-induced alterations of host behaviour. Parasitology 109:S119–S139

    Article  PubMed  Google Scholar 

  • Vernberg WB, Vernberg FJ (1963) Influence of parasitism on thermal resistance of the mud-flat snail, Nassarius obsoletus Say. Exp Parasitol 14:330–332

    Article  PubMed  CAS  Google Scholar 

  • Watson DW, Mullens BA, Petersen JJ (1993) Behavioural fever response of Musca domestica (Diptera: Muscidae) to infection by Entomophthora muscae (Zygomycetes: Entomophthorales). J Invert Pathol 61:10–16

    Article  Google Scholar 

Download references

Acknowledgments

Support from staff at the Portobello Marine Laboratory is much appreciated. R. Lee designed the thermal gradient chamber. Comments by two anonymous reviewers and A. Koehler, T. Leung, H. Randhawa and A. Studer improved the manuscript. National Sciences and Engineering Research Council of Canada provided post-doctoral funding to AEB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Bates.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 7 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bates, A.E., Leiterer, F., Wiedeback, M.L. et al. Parasitized snails take the heat: a case of host manipulation?. Oecologia 167, 613–621 (2011). https://doi.org/10.1007/s00442-011-2014-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-011-2014-0

Keywords

Navigation