Skip to main content

Advertisement

Log in

Species traits predict assembly of mayfly and stonefly communities along pH gradients

  • Community ecology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Much recent ecological research has centred on the interrelations between species diversity and ecological processes. In the present study, I show how species traits may aid in comprehending ecology by studying the link between an environmental variable and functional traits. I examined the composition of species traits with a theoretically underpinned relationship to ecological processes along a pH gradient. I focused on body size, reproductive output, life cycle length and feeding habit of mayflies and stoneflies. In mayfly assemblages, I found smaller body size, greater reproductive output, faster life cycles and a larger proportion of gathering collectors and scrapers with increasing pH. In stonefly assemblages, I found smaller body size, greater reproductive output and faster life cycles at sites with a history of long-term natural acidification, but no clear trends in feeding habits and in most traits where acidification is anthropogenic. The results suggest that mayflies and stoneflies exhibit different ecological functions following different ecological strategies. Mayflies follow an opportunistic strategy relative to stoneflies, likely facilitating high rates of ecological processes with respect to the autotrophic resource base at neutral sites. Relative to mayflies, stoneflies follow an equilibrium strategy contributing to ecological functioning in heterotrophic ecosystems and likely maintaining heterotrophic processes despite the erosion of species diversity in response to acidification. The rules governing an ecological community may be more readily revealed by studying the distribution of species traits instead of species diversity; by studying traits, we are likely to improve our understanding of the workings of ecological communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Beale CM, Lennon JJ, Yearsley JM, Brewer MJ, Elston DA (2010) Regression analysis of spatial data. Ecol Lett 13:246–264. doi:10.1111/j.1461-0248.2009.01422.x

    Article  PubMed  Google Scholar 

  • Bishop KH, Laudon H, Köhler S (2000) Separating the natural and anthropogenic components of spring flood pH decline: a method for areas that are not chronically acidified. Water Resour Res 36:1873–1884. doi:10.1029/2000WR900030

    Article  Google Scholar 

  • Bonada N, Dolédec S, Statzner B (2007) Taxonomic and biological trait differences of stream macroinvertebrate communities between mediterranean and temperate regions: implications for future climatic scenarios. Global Change Biol 13:1658–1671. doi:10.1111/j.1365-2486.2007.01375.x

    Article  Google Scholar 

  • Bracken MES, Friberg SE, Gonzalez-Dorantes CA, Williams SL (2008) Functional consequences of realistic biodiversity changes in a marine ecosystem. Proc Natl Acad Sci USA 105:924–928. doi:10.1073/pnas.0704103105

    Article  PubMed  CAS  Google Scholar 

  • Brinck P (1949) Studies on Swedish Stoneflies [Plecoptera]. In: Opuscula Entomologica Supplementum XI. Entomologiska Sällskapet i Lund, Lund

  • Brittain JE (1982) Biology of Mayflies. Annu Rev Entomol 27:119–147. doi:10.1146/annurev.en.27.010182.001003

    Article  Google Scholar 

  • Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789. doi:10.1890/03-9000

    Article  Google Scholar 

  • Cadotte MW, Cardinale BJ, Oakley TH (2008) Evolutionary history and the effect of biodiversity on plant productivity. Proc Natl Acad Sci USA 105:17012–17017. doi:10.1073/pnas.0805962105

    Article  PubMed  CAS  Google Scholar 

  • Clifford HF (1982) Life cycles of mayflies (Ephemeroptera), with special reference to voltinism. Quaest Entomol 18:15–90

    Google Scholar 

  • Collier KJ, Ball OJ, Graesser AK, Main MR, Winterbourn MJ (1990) Do organic and anthropogenic acidity have similar effects on aquatic fauna? Oikos 59:33–38

    Article  Google Scholar 

  • Cornwell WK, Ackerly DD (2009) Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol Monogr 79:109–126. doi:10.1890/07-1134.1

    Article  Google Scholar 

  • Cummins KW (1973) Trophic relations of aquatic insects. Annu Rev Entomol 18:183–206. doi:10.1146/annurev.en.18.010173.001151

    Article  Google Scholar 

  • Cummins KW (1974) Structure and function of stream ecosystems. Bioscience 24:631–641

    Article  Google Scholar 

  • Cummins KW, Klug MJ (1979) Feeding ecology of stream invertebrates. Annu Rev Ecol Syst 10:147–172. doi:10.1146/annurev.es.10.110179.001051

    Article  Google Scholar 

  • Dangles O, Malmqvist B, Laudon H (2004) Naturally acid freshwater ecosystems are diverse and functional: evidence from boreal streams. Oikos 104:149–155. doi:10.1111/j.0030-1299.2004.12360.x

    Article  Google Scholar 

  • Díaz S, Lavorel S, de Bello F, Quétier F, Grigulis K, Robson M (2007) Incorporating plant functional diversity effects in ecosystem service assessments. Proc Natl Acad Sci USA 104:20684–20689. doi:10.1073/pnas.0704716104

    Article  PubMed  Google Scholar 

  • Dolédec S, Statzner B, Bournard M (1999) Species traits for future biomonitoring across ecoregions: patterns along a human-impacted river. Freshw Biol 42:737–758. doi:10.1046/j.1365-2427.1999.00509.x

    Article  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15. doi:10.1086/284325

    Article  Google Scholar 

  • Fölster J, Sandin L, Wallin M (2004) A suggestion to a typology for Swedish inland surface waters according to the EU Water Framework Directive. Department of Environmental Assessment, Swedish University of Agricultural Sciences, report 13, Uppsala, Sweden

  • Fortunel C et al (2009) Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe. Ecology 90:598–611. doi:10.1890/08-0418.1

    Article  PubMed  Google Scholar 

  • Fukami T, Bezemer TM, Mortimer SR, van der Putten WH (2005) Species divergence and trait convergence in experimental plant community assembly. Ecol Lett 8:1283–1290. doi:10.1111/j.1461-0248.2005.00829.x

    Article  Google Scholar 

  • Garland T, Bennett AF, Rezende EL (2005) Phylogenetic approaches in comparative physiology. J Exp Biol 208:3015–3035. doi:10.1242/jeb.01745

    Article  PubMed  Google Scholar 

  • Harvey PH (1996) Phylogenies for ecologists. J Anim Ecol 65:255–263

    Article  Google Scholar 

  • Haybach A, Schöll F, König B, Kohmann F (2004) Use of biological traits for interpreting functional relationships in large rivers. Limnologica 34:451–459. doi:10.1016/S0075-9511(04)80012-4

    Google Scholar 

  • Heino J (2008) Patterns of functional biodiversity and function-environment relationships in lake littoral macroinvertebrates. Limnol Oceanogr 53:1446–1455

    Article  Google Scholar 

  • Hynes HBN (1976) Biology of Plecoptera. Annu Rev Entomol 21:135–153. doi:10.1146/annurev.en.21.010176.001031

    Article  Google Scholar 

  • Jongman RHG, ter Braak CJF, van Tongeren OFR (eds) (1995) Data analysis in community and landscape ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Korsman T (1999) Temporal and spatial trends of lake acidity in northern Sweden. J Paleolimnol 22:1–15. doi:10.1023/A:1008003218065

    Article  Google Scholar 

  • Lamouroux N, Dolédec S, Gayraud S (2004) Biological traits of stream macroinvertebrate communities: effects of microhabitat, reach, and basin filters. J North Am Benthol Soc 23:449–466. doi:10.1899/0887-3593(2004)023<0449:BTOSMC>2.0.CO;2

    Article  Google Scholar 

  • Laudon H, Bishop KH (1999) Quantifying sources of acid neutralisation capacity depression during spring flood episodes in Northern Sweden. Environ Pollut 105:427–435. doi:10.1016/S0269-7491(99)00036-6

    Article  CAS  Google Scholar 

  • Laudon H, Bishop KH (2002) Episodic stream water pH decline during autumn storms following a summer drought in northern Sweden. Hydrol Process 16:1725–1733. doi:10.1002/hyp.360

    Article  Google Scholar 

  • Ledger ME, Hildrew AG (2000) Herbivory in an acid stream. Freshw Biol 43:545–556. doi:10.1046/j.1365-2427.2000.t01-1-00534.x

    Google Scholar 

  • Ledger ME, Hildrew AG (2005) The ecology of acidification and recovery: changes in herbivore-algal food web linkages across a stream pH gradient. Environ Pollut 137:103–118. doi:10.1016/j.envpol.2004.12.024

    Article  PubMed  CAS  Google Scholar 

  • Lillehammer A (1988) Stoneflies (Plecoptera) of Fennoscandia and Denmark. Brill, Leiden

    Google Scholar 

  • Loreau M (2010) Linking biodiversity and ecosystems: towards a unifying ecological theory. Philos Trans R Soc Lond B 365:49–60. doi:10.1098/rstb.2009.0155

    Article  Google Scholar 

  • MacArthur HH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Malmqvist B (1999) Lotic stoneflies (Plecoptera) in northern Sweden: patterns in species richness and assemblage structure. In: Friberg N, Carl JD (eds) Biodiversity in Benthic Ecology, NERI Technical Report No. 266. National Environmental Research Institute, Denmark, Silkeborg, Denmark

  • Maurice CG, Lowe RL, Burton TM, Stanford RM (1987) Biomass and compositional changes in the periphytic community of an artificial stream in response to lowered pH. Water Air Soil Poll 33:165–177. doi:10.1007/BF00191385

    Article  CAS  Google Scholar 

  • McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185. doi:10.1016/j.tree.2006.02.002

    Article  PubMed  Google Scholar 

  • Meegan SK, Perry SA (1996) Periphyton communities in headwater streams of different water chemistry in the central Appalachian Mountains. J Freshw Ecol 11:247–256

    Article  CAS  Google Scholar 

  • Merritt RW et al (2002) Development and application of a macroinvertebrate functional-group approach in the bioassessment of remnant river oxbows in southwest Florida. J North Am Benthol Soc 21:290–310

    Article  Google Scholar 

  • Merritt RW, Cummins KW, Berg MB (eds) (2008) An introduction to the aquatic insects of North America, 4th edn. Kendall/Hunt, Dubuque

    Google Scholar 

  • Ogden TH, Gattolliat JL, Sartori M, Staniczek AH, Soldán T, Whiting MF (2009) Towards a new paradigm in mayfly phylogeny (Ephemeroptera): combined analysis of morphological and molecular data. Syst Entomol 34:616–634. doi:10.1111/j.1365-3113.2009.00488.x

    Article  Google Scholar 

  • Oksanen J, Kindt R, Legendre P, O’Hara B, Simpson GL, Stevens MHH (2008) vegan: Community Ecology Package. In. http://cran.r-project.org/, http://vegan.r-forge.r-project.org/, R package version 1.11-4

  • Otto C, Svensson BS (1983) Properties of acid brown water streams in South Sweden. Arch Hydrobiol 99:15–36

    CAS  Google Scholar 

  • Petrin Z, Laudon H, Malmqvist B (2007a) Does freshwater macroinvertebrate diversity along a pH-gradient reflect adaptation to low pH? Freshw Biol 52:2172–2183. doi:10.1111/j.1365-2427.2007.01845.x

    Article  CAS  Google Scholar 

  • Petrin Z, McKie B, Buffam I, Laudon H, Malmqvist B (2007b) Landscape-controlled chemistry variation affects communities and ecosystem function in headwater streams. Can J Fish Aquat Sci 64:1563–1572. doi:10.1139/f07-118

    Article  Google Scholar 

  • Petrin Z, Englund G, Malmqvist B (2008a) Contrasting effects of anthropogenic and natural acidity in streams: a meta-analysis. Proc R Soc Lond B 275:1143–1148. doi:10.1098/rspb.2008.0023

    Article  Google Scholar 

  • Petrin Z, Laudon H, Malmqvist B (2008b) Diverging effects of anthropogenic acidification and natural acidity on community structure in Swedish streams. Sci Total Environ 394:321–330. doi:10.1016/j.scitotenv.2008.01.055

    Article  PubMed  CAS  Google Scholar 

  • Pianka ER (1972) r and K selection or b and d selection? Am Nat 106:581–588

    Article  Google Scholar 

  • Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer, New York

    Book  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, the R Core Team (2009) nlme: Linear and nonlinear mixed effects models. R package version 3:1–93

    Google Scholar 

  • Rawer-Jost C, Böhmer J, Blank J, Rahmann H (2000) Macroinvertebrate functional feeding group methods in ecological assessment. Hydrobiologia 422:225–232. doi:10.1023/A:1017078401734

    Article  Google Scholar 

  • Renberg I, Korsman T, Anderson NJ (1993) A temporal perspective of lake acidification in Sweden. Ambio 22:264–271

    Google Scholar 

  • Rosemond AD, Reice SR, Elwood JW, Mulholland PJ (1992) The effects of stream acidity on benthic invertebrate communities in the south-eastern United States. Freshw Biol 27:193–209. doi:10.1111/j.1365-2427.1992.tb00533.x

    Article  CAS  Google Scholar 

  • Roughgarden J (1971) Density-dependent natural selection. Ecology 52:453–468. doi:10.2307/1937628

    Article  Google Scholar 

  • Sandin L (2003) Benthic macroinvertebrates in Swedish streams: community structure, taxon richness, and environmental relations. Ecography 26:269–282. doi:10.1034/j.1600-0587.2003.03380.x

    Article  Google Scholar 

  • Schmera D, Erős T, Podani J (2009) A measure for assessing functional diversity in ecological communities. Aquat Ecol 43:157–167. doi:10.1007/s10452-007-9152-9

    Article  Google Scholar 

  • Statzner B, Bonada N, Dolédec S (2007) Conservation of taxonomic and biological trait diversity of European stream macroinvertebrate communities: a case for a collective public database. Biodivers Conserv 16:3609–3632. doi:10.1007/s10531-007-9150-1

    Article  Google Scholar 

  • R Development Core Team (2009) R: A language and environment for statistical computing. R Foundation for Statistical Computing, http://www.R-project.org/, Vienna, Austria

  • Townsend CR, Hildrew AG, Francis J (1983) Community structure in some southern English streams: the influence of physicochemical factors. Freshw Biol 13:521–544. doi:10.1111/j.1365-2427.1983.tb00011.x

    Article  Google Scholar 

  • Townsend CR, Dolédec S, Scarsbrook MR (1997) Species traits in relation to temporal and spatial heterogeneity in streams: a test of habitat templet theory. Freshw Biol 37:367–387. doi:10.1046/j.1365-2427.1997.00166.x

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York

    Google Scholar 

  • Wallace JB, Eggert SL, Meyer JL, Webster JR (1997) Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 277:102–104. doi:10.1126/science.277.5322.102

    Article  CAS  Google Scholar 

  • Warfvinge P, Bertills U (1999) Recovery from acidification in the natural environment: present knowledge and future scenarios. Swedish Environmental Protection Agency, report 5034, Stockholm

  • Wilander A, Johnson RK, Goedkoop W, Lundin L (1998) Riksinventering 1995––En synoptisk studie av vattenkemi och bottenfauna i svenska sjöar och vattendrag. Swedish Environmental Protection Agency, report 4813, Uppsala

  • Wilander A, Johnson RK, Goedkoop W (2003) Riksinventering 2000––En synoptisk studie av vattenkemi och bottenfauna i svenska sjöar och vattendrag. Department of Environmental Assessment, University of Agricultural Sciences, report 2003:1, Uppsala

  • Winemiller KO, Rose KA (1992) Patterns of life-history diversification in North American fishes: Implications for population regulation. Can J Fish Aquat Sci 49:2196–2218

    Article  Google Scholar 

  • Zwick P (2000) Phylogenetic system and zoogeography of the Plecoptera. Annu Rev Entomol 45:709–746

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank Edwige Bellier, Núria Bonada, John Edward Brittain, Grégoire Certain, Ola Diserud, Richard Hedger, Ingeborg Palm Helland, Frank Johansson, Odd Terje Sandlund, Ann Kristin Schartau and Maxim Teichert for discussing data analysis, the results and data presentation. Joel Trexler’s, the anonymous referees’ and the editor’s helpful comments are gratefully acknowledged. This paper is a contribution to the BIOCLASS-FRESH project (VANN: Biological indicators for classification of ecological status in freshwater, 184002) funded by the Norwegian Research Council (the MILJØ2015 programme), the Norwegian Energy Directorate (NVE), the Climate and Pollution Agency (KLIF, formerly SFT) and the Norwegian Directorate for Nature Management (DN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zlatko Petrin.

Additional information

Communicated by Joel Trexler.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrin, Z. Species traits predict assembly of mayfly and stonefly communities along pH gradients. Oecologia 167, 513–524 (2011). https://doi.org/10.1007/s00442-011-2003-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-011-2003-3

Keywords

Navigation