Advertisement

Oecologia

, Volume 167, Issue 2, pp 513–524 | Cite as

Species traits predict assembly of mayfly and stonefly communities along pH gradients

  • Zlatko Petrin
Community ecology - Original Paper

Abstract

Much recent ecological research has centred on the interrelations between species diversity and ecological processes. In the present study, I show how species traits may aid in comprehending ecology by studying the link between an environmental variable and functional traits. I examined the composition of species traits with a theoretically underpinned relationship to ecological processes along a pH gradient. I focused on body size, reproductive output, life cycle length and feeding habit of mayflies and stoneflies. In mayfly assemblages, I found smaller body size, greater reproductive output, faster life cycles and a larger proportion of gathering collectors and scrapers with increasing pH. In stonefly assemblages, I found smaller body size, greater reproductive output and faster life cycles at sites with a history of long-term natural acidification, but no clear trends in feeding habits and in most traits where acidification is anthropogenic. The results suggest that mayflies and stoneflies exhibit different ecological functions following different ecological strategies. Mayflies follow an opportunistic strategy relative to stoneflies, likely facilitating high rates of ecological processes with respect to the autotrophic resource base at neutral sites. Relative to mayflies, stoneflies follow an equilibrium strategy contributing to ecological functioning in heterotrophic ecosystems and likely maintaining heterotrophic processes despite the erosion of species diversity in response to acidification. The rules governing an ecological community may be more readily revealed by studying the distribution of species traits instead of species diversity; by studying traits, we are likely to improve our understanding of the workings of ecological communities.

Keywords

Biodiversity Ecological functioning Ephemeroptera Plecoptera Trait diversity 

Notes

Acknowledgments

I thank Edwige Bellier, Núria Bonada, John Edward Brittain, Grégoire Certain, Ola Diserud, Richard Hedger, Ingeborg Palm Helland, Frank Johansson, Odd Terje Sandlund, Ann Kristin Schartau and Maxim Teichert for discussing data analysis, the results and data presentation. Joel Trexler’s, the anonymous referees’ and the editor’s helpful comments are gratefully acknowledged. This paper is a contribution to the BIOCLASS-FRESH project (VANN: Biological indicators for classification of ecological status in freshwater, 184002) funded by the Norwegian Research Council (the MILJØ2015 programme), the Norwegian Energy Directorate (NVE), the Climate and Pollution Agency (KLIF, formerly SFT) and the Norwegian Directorate for Nature Management (DN).

Supplementary material

442_2011_2003_MOESM1_ESM.pdf (133 kb)
Online Resource 1: Functional traits of mayfly and stonefly species. (PDF 132 kb)
442_2011_2003_MOESM2_ESM.pdf (101 kb)
Online Resource 2: Redundancy analyses of the effects of environmental variables on mayfly and stonefly trait composition. (PDF 100 kb)
442_2011_2003_MOESM3_ESM.pdf (352 kb)
Online Resource 3: Effects of pH and region on the life cycles and feeding habits of mayfly assemblages. (PDF 351 kb)
442_2011_2003_MOESM4_ESM.pdf (372 kb)
Online Resource 4: Effects of pH and region on the life cycles and feeding habits of stonefly assemblages. (PDF 372 kb)

References

  1. Beale CM, Lennon JJ, Yearsley JM, Brewer MJ, Elston DA (2010) Regression analysis of spatial data. Ecol Lett 13:246–264. doi: 10.1111/j.1461-0248.2009.01422.x PubMedCrossRefGoogle Scholar
  2. Bishop KH, Laudon H, Köhler S (2000) Separating the natural and anthropogenic components of spring flood pH decline: a method for areas that are not chronically acidified. Water Resour Res 36:1873–1884. doi: 10.1029/2000WR900030 CrossRefGoogle Scholar
  3. Bonada N, Dolédec S, Statzner B (2007) Taxonomic and biological trait differences of stream macroinvertebrate communities between mediterranean and temperate regions: implications for future climatic scenarios. Global Change Biol 13:1658–1671. doi: 10.1111/j.1365-2486.2007.01375.x CrossRefGoogle Scholar
  4. Bracken MES, Friberg SE, Gonzalez-Dorantes CA, Williams SL (2008) Functional consequences of realistic biodiversity changes in a marine ecosystem. Proc Natl Acad Sci USA 105:924–928. doi: 10.1073/pnas.0704103105 PubMedCrossRefGoogle Scholar
  5. Brinck P (1949) Studies on Swedish Stoneflies [Plecoptera]. In: Opuscula Entomologica Supplementum XI. Entomologiska Sällskapet i Lund, LundGoogle Scholar
  6. Brittain JE (1982) Biology of Mayflies. Annu Rev Entomol 27:119–147. doi: 10.1146/annurev.en.27.010182.001003 CrossRefGoogle Scholar
  7. Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789. doi: 10.1890/03-9000 CrossRefGoogle Scholar
  8. Cadotte MW, Cardinale BJ, Oakley TH (2008) Evolutionary history and the effect of biodiversity on plant productivity. Proc Natl Acad Sci USA 105:17012–17017. doi: 10.1073/pnas.0805962105 PubMedCrossRefGoogle Scholar
  9. Clifford HF (1982) Life cycles of mayflies (Ephemeroptera), with special reference to voltinism. Quaest Entomol 18:15–90Google Scholar
  10. Collier KJ, Ball OJ, Graesser AK, Main MR, Winterbourn MJ (1990) Do organic and anthropogenic acidity have similar effects on aquatic fauna? Oikos 59:33–38CrossRefGoogle Scholar
  11. Cornwell WK, Ackerly DD (2009) Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol Monogr 79:109–126. doi: 10.1890/07-1134.1 CrossRefGoogle Scholar
  12. Cummins KW (1973) Trophic relations of aquatic insects. Annu Rev Entomol 18:183–206. doi: 10.1146/annurev.en.18.010173.001151 CrossRefGoogle Scholar
  13. Cummins KW (1974) Structure and function of stream ecosystems. Bioscience 24:631–641CrossRefGoogle Scholar
  14. Cummins KW, Klug MJ (1979) Feeding ecology of stream invertebrates. Annu Rev Ecol Syst 10:147–172. doi: 10.1146/annurev.es.10.110179.001051 CrossRefGoogle Scholar
  15. Dangles O, Malmqvist B, Laudon H (2004) Naturally acid freshwater ecosystems are diverse and functional: evidence from boreal streams. Oikos 104:149–155. doi: 10.1111/j.0030-1299.2004.12360.x CrossRefGoogle Scholar
  16. Díaz S, Lavorel S, de Bello F, Quétier F, Grigulis K, Robson M (2007) Incorporating plant functional diversity effects in ecosystem service assessments. Proc Natl Acad Sci USA 104:20684–20689. doi: 10.1073/pnas.0704716104 PubMedCrossRefGoogle Scholar
  17. Dolédec S, Statzner B, Bournard M (1999) Species traits for future biomonitoring across ecoregions: patterns along a human-impacted river. Freshw Biol 42:737–758. doi: 10.1046/j.1365-2427.1999.00509.x CrossRefGoogle Scholar
  18. Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15. doi: 10.1086/284325 CrossRefGoogle Scholar
  19. Fölster J, Sandin L, Wallin M (2004) A suggestion to a typology for Swedish inland surface waters according to the EU Water Framework Directive. Department of Environmental Assessment, Swedish University of Agricultural Sciences, report 13, Uppsala, SwedenGoogle Scholar
  20. Fortunel C et al (2009) Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe. Ecology 90:598–611. doi: 10.1890/08-0418.1 PubMedCrossRefGoogle Scholar
  21. Fukami T, Bezemer TM, Mortimer SR, van der Putten WH (2005) Species divergence and trait convergence in experimental plant community assembly. Ecol Lett 8:1283–1290. doi: 10.1111/j.1461-0248.2005.00829.x CrossRefGoogle Scholar
  22. Garland T, Bennett AF, Rezende EL (2005) Phylogenetic approaches in comparative physiology. J Exp Biol 208:3015–3035. doi: 10.1242/jeb.01745 PubMedCrossRefGoogle Scholar
  23. Harvey PH (1996) Phylogenies for ecologists. J Anim Ecol 65:255–263CrossRefGoogle Scholar
  24. Haybach A, Schöll F, König B, Kohmann F (2004) Use of biological traits for interpreting functional relationships in large rivers. Limnologica 34:451–459. doi: 10.1016/S0075-9511(04)80012-4 Google Scholar
  25. Heino J (2008) Patterns of functional biodiversity and function-environment relationships in lake littoral macroinvertebrates. Limnol Oceanogr 53:1446–1455CrossRefGoogle Scholar
  26. Hynes HBN (1976) Biology of Plecoptera. Annu Rev Entomol 21:135–153. doi: 10.1146/annurev.en.21.010176.001031 CrossRefGoogle Scholar
  27. Jongman RHG, ter Braak CJF, van Tongeren OFR (eds) (1995) Data analysis in community and landscape ecology. Cambridge University Press, CambridgeGoogle Scholar
  28. Korsman T (1999) Temporal and spatial trends of lake acidity in northern Sweden. J Paleolimnol 22:1–15. doi: 10.1023/A:1008003218065 CrossRefGoogle Scholar
  29. Lamouroux N, Dolédec S, Gayraud S (2004) Biological traits of stream macroinvertebrate communities: effects of microhabitat, reach, and basin filters. J North Am Benthol Soc 23:449–466. doi: 10.1899/0887-3593(2004)023<0449:BTOSMC>2.0.CO;2 CrossRefGoogle Scholar
  30. Laudon H, Bishop KH (1999) Quantifying sources of acid neutralisation capacity depression during spring flood episodes in Northern Sweden. Environ Pollut 105:427–435. doi: 10.1016/S0269-7491(99)00036-6 CrossRefGoogle Scholar
  31. Laudon H, Bishop KH (2002) Episodic stream water pH decline during autumn storms following a summer drought in northern Sweden. Hydrol Process 16:1725–1733. doi: 10.1002/hyp.360 CrossRefGoogle Scholar
  32. Ledger ME, Hildrew AG (2000) Herbivory in an acid stream. Freshw Biol 43:545–556. doi: 10.1046/j.1365-2427.2000.t01-1-00534.x Google Scholar
  33. Ledger ME, Hildrew AG (2005) The ecology of acidification and recovery: changes in herbivore-algal food web linkages across a stream pH gradient. Environ Pollut 137:103–118. doi: 10.1016/j.envpol.2004.12.024 PubMedCrossRefGoogle Scholar
  34. Lillehammer A (1988) Stoneflies (Plecoptera) of Fennoscandia and Denmark. Brill, LeidenGoogle Scholar
  35. Loreau M (2010) Linking biodiversity and ecosystems: towards a unifying ecological theory. Philos Trans R Soc Lond B 365:49–60. doi: 10.1098/rstb.2009.0155 CrossRefGoogle Scholar
  36. MacArthur HH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, PrincetonGoogle Scholar
  37. Malmqvist B (1999) Lotic stoneflies (Plecoptera) in northern Sweden: patterns in species richness and assemblage structure. In: Friberg N, Carl JD (eds) Biodiversity in Benthic Ecology, NERI Technical Report No. 266. National Environmental Research Institute, Denmark, Silkeborg, DenmarkGoogle Scholar
  38. Maurice CG, Lowe RL, Burton TM, Stanford RM (1987) Biomass and compositional changes in the periphytic community of an artificial stream in response to lowered pH. Water Air Soil Poll 33:165–177. doi: 10.1007/BF00191385 CrossRefGoogle Scholar
  39. McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185. doi: 10.1016/j.tree.2006.02.002 PubMedCrossRefGoogle Scholar
  40. Meegan SK, Perry SA (1996) Periphyton communities in headwater streams of different water chemistry in the central Appalachian Mountains. J Freshw Ecol 11:247–256CrossRefGoogle Scholar
  41. Merritt RW et al (2002) Development and application of a macroinvertebrate functional-group approach in the bioassessment of remnant river oxbows in southwest Florida. J North Am Benthol Soc 21:290–310CrossRefGoogle Scholar
  42. Merritt RW, Cummins KW, Berg MB (eds) (2008) An introduction to the aquatic insects of North America, 4th edn. Kendall/Hunt, DubuqueGoogle Scholar
  43. Ogden TH, Gattolliat JL, Sartori M, Staniczek AH, Soldán T, Whiting MF (2009) Towards a new paradigm in mayfly phylogeny (Ephemeroptera): combined analysis of morphological and molecular data. Syst Entomol 34:616–634. doi: 10.1111/j.1365-3113.2009.00488.x CrossRefGoogle Scholar
  44. Oksanen J, Kindt R, Legendre P, O’Hara B, Simpson GL, Stevens MHH (2008) vegan: Community Ecology Package. In. http://cran.r-project.org/, http://vegan.r-forge.r-project.org/, R package version 1.11-4
  45. Otto C, Svensson BS (1983) Properties of acid brown water streams in South Sweden. Arch Hydrobiol 99:15–36Google Scholar
  46. Petrin Z, Laudon H, Malmqvist B (2007a) Does freshwater macroinvertebrate diversity along a pH-gradient reflect adaptation to low pH? Freshw Biol 52:2172–2183. doi: 10.1111/j.1365-2427.2007.01845.x CrossRefGoogle Scholar
  47. Petrin Z, McKie B, Buffam I, Laudon H, Malmqvist B (2007b) Landscape-controlled chemistry variation affects communities and ecosystem function in headwater streams. Can J Fish Aquat Sci 64:1563–1572. doi: 10.1139/f07-118 CrossRefGoogle Scholar
  48. Petrin Z, Englund G, Malmqvist B (2008a) Contrasting effects of anthropogenic and natural acidity in streams: a meta-analysis. Proc R Soc Lond B 275:1143–1148. doi: 10.1098/rspb.2008.0023 CrossRefGoogle Scholar
  49. Petrin Z, Laudon H, Malmqvist B (2008b) Diverging effects of anthropogenic acidification and natural acidity on community structure in Swedish streams. Sci Total Environ 394:321–330. doi: 10.1016/j.scitotenv.2008.01.055 PubMedCrossRefGoogle Scholar
  50. Pianka ER (1972) r and K selection or b and d selection? Am Nat 106:581–588CrossRefGoogle Scholar
  51. Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer, New YorkCrossRefGoogle Scholar
  52. Pinheiro J, Bates D, DebRoy S, Sarkar D, the R Core Team (2009) nlme: Linear and nonlinear mixed effects models. R package version 3:1–93Google Scholar
  53. Rawer-Jost C, Böhmer J, Blank J, Rahmann H (2000) Macroinvertebrate functional feeding group methods in ecological assessment. Hydrobiologia 422:225–232. doi: 10.1023/A:1017078401734 CrossRefGoogle Scholar
  54. Renberg I, Korsman T, Anderson NJ (1993) A temporal perspective of lake acidification in Sweden. Ambio 22:264–271Google Scholar
  55. Rosemond AD, Reice SR, Elwood JW, Mulholland PJ (1992) The effects of stream acidity on benthic invertebrate communities in the south-eastern United States. Freshw Biol 27:193–209. doi: 10.1111/j.1365-2427.1992.tb00533.x CrossRefGoogle Scholar
  56. Roughgarden J (1971) Density-dependent natural selection. Ecology 52:453–468. doi: 10.2307/1937628 CrossRefGoogle Scholar
  57. Sandin L (2003) Benthic macroinvertebrates in Swedish streams: community structure, taxon richness, and environmental relations. Ecography 26:269–282. doi: 10.1034/j.1600-0587.2003.03380.x CrossRefGoogle Scholar
  58. Schmera D, Erős T, Podani J (2009) A measure for assessing functional diversity in ecological communities. Aquat Ecol 43:157–167. doi: 10.1007/s10452-007-9152-9 CrossRefGoogle Scholar
  59. Statzner B, Bonada N, Dolédec S (2007) Conservation of taxonomic and biological trait diversity of European stream macroinvertebrate communities: a case for a collective public database. Biodivers Conserv 16:3609–3632. doi: 10.1007/s10531-007-9150-1 CrossRefGoogle Scholar
  60. R Development Core Team (2009) R: A language and environment for statistical computing. R Foundation for Statistical Computing, http://www.R-project.org/, Vienna, Austria
  61. Townsend CR, Hildrew AG, Francis J (1983) Community structure in some southern English streams: the influence of physicochemical factors. Freshw Biol 13:521–544. doi: 10.1111/j.1365-2427.1983.tb00011.x CrossRefGoogle Scholar
  62. Townsend CR, Dolédec S, Scarsbrook MR (1997) Species traits in relation to temporal and spatial heterogeneity in streams: a test of habitat templet theory. Freshw Biol 37:367–387. doi: 10.1046/j.1365-2427.1997.00166.x CrossRefGoogle Scholar
  63. Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New YorkGoogle Scholar
  64. Wallace JB, Eggert SL, Meyer JL, Webster JR (1997) Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 277:102–104. doi: 10.1126/science.277.5322.102 CrossRefGoogle Scholar
  65. Warfvinge P, Bertills U (1999) Recovery from acidification in the natural environment: present knowledge and future scenarios. Swedish Environmental Protection Agency, report 5034, StockholmGoogle Scholar
  66. Wilander A, Johnson RK, Goedkoop W, Lundin L (1998) Riksinventering 1995––En synoptisk studie av vattenkemi och bottenfauna i svenska sjöar och vattendrag. Swedish Environmental Protection Agency, report 4813, UppsalaGoogle Scholar
  67. Wilander A, Johnson RK, Goedkoop W (2003) Riksinventering 2000––En synoptisk studie av vattenkemi och bottenfauna i svenska sjöar och vattendrag. Department of Environmental Assessment, University of Agricultural Sciences, report 2003:1, UppsalaGoogle Scholar
  68. Winemiller KO, Rose KA (1992) Patterns of life-history diversification in North American fishes: Implications for population regulation. Can J Fish Aquat Sci 49:2196–2218CrossRefGoogle Scholar
  69. Zwick P (2000) Phylogenetic system and zoogeography of the Plecoptera. Annu Rev Entomol 45:709–746PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Norwegian Institute for Nature Research (NINA)TrondheimNorway

Personalised recommendations