Skip to main content

Measuring stress in wildlife: techniques for quantifying glucocorticoids

Abstract

Stress responses play a key role in allowing animals to cope with change and challenge in the face of both environmental certainty and uncertainty. Measurement of glucocorticoid levels, key elements in the neuroendocrine stress axis, can give insight into an animal’s well-being and can aid understanding ecological and evolutionary processes as well as conservation and management issues. We give an overview of the four main biological samples that have been utilized [blood, saliva, excreta (feces and urine), and integumentary structures (hair and feathers)], their advantages and disadvantages for use with wildlife, and some of the background and pitfalls that users must consider in interpreting their results. The matrix of choice will depend on the nature of the study and of the species, on whether one is examining the impact of acute versus chronic stressors, and on the degree of invasiveness that is possible or desirable. In some cases, more than one matrix can be measured to achieve the same ends. All require a significant degree of expertise, sometimes in obtaining the sample and always in extracting and analyzing the glucocorticoid or its metabolites. Glucocorticoid measurement is proving to be a powerful integrator of environmental stressors and of an animal’s condition.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Abraham GE (1975) Radioimmunoassay of steroids in biological fluids. J Steroid Biochem 6:261–270

    PubMed  CAS  Article  Google Scholar 

  • Accorsi P, Carloni E, Valsecchi P, Viggiani R, Gamberoni M, Tamanini C, Seren E (2008) Cortisol determination in hair and feces from domestic cats and dogs. Gen Comp Endocrinol 155:398–402

    PubMed  CAS  Article  Google Scholar 

  • Anisman H, Griffiths J, Matheson K, Ravindran AV, Merali Z (2001) Posttraumatic stress symptoms and salivary cortisol levels. Am J Psychiatry 158:1509–1511

    PubMed  CAS  Article  Google Scholar 

  • Arnold JM, Oswald SA, Voigt CC, Palme R, Braasch A, Bauch C, Becker PH (2008) Taking the stress out of blood collection: comparison of field blood-sampling techniques for analysis of baseline corticosterone. J Avian Biol 39:588–592

    Article  Google Scholar 

  • Astheimer LB, Buttener WA, Wingfield JC (1994) Gender and seasonal differences in the adrenocortical response to ACTH challenge in an arctic passerine, Zonotrichia leucophrys gambelii. Gen Comp Endocrinol 94:33–43

    PubMed  CAS  Article  Google Scholar 

  • Auperin B, Geslin M (2008) Plasma cortisol response to stress in juvenile rainbow trout is influenced by their life history during early development and by egg cortisol content. Gen Comp Endocrinol 158:234–239

    PubMed  CAS  Article  Google Scholar 

  • Bahr NI, Palme R, Möhle U, Hodges JK, Heistermann M (2000) Comparative aspects of the metabolism and excretion of cortisol in three individual nonhuman primates. Gen Comp Endocrinol 117:427–438

    PubMed  CAS  Article  Google Scholar 

  • Banerjee S, Levitz M, Rosenberg CR (1962) On the stability of salivary progesterone under various conditions of storage. Steroids 46:967–974

    Article  Google Scholar 

  • Barsano CP, Baumann G (1989) Simple algebraic and graphic methods for the apportionment of hormone (and receptor) into bound and free fractions in binding equilibria; or how to calculate bound and free hormone? Endocrinology 124:1101–1106

    PubMed  CAS  Article  Google Scholar 

  • Beehner JC, McCann C (2008) Seasonal and altitudinal effects on glucocorticoid metabolites in a wild primate (Theropithecus gelada). Physiol Behav 95:508–514

    PubMed  CAS  Article  Google Scholar 

  • Beehner JC, Whitten PL (2004) Modifications of a field method for fecal steroid analysis in baboons. Physiol Behav 82:269–277

    PubMed  CAS  Article  Google Scholar 

  • Bentley PJ (1998) Comparative vertebrate endocrinology, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Blas J, Bortolotti GR, Tella JL, Marchant TA (2007) Stress response during development predicts fitness in a wild, long lived vertebrate. Proc Natl Acad Sci USA 104:8880–8884

    PubMed  CAS  Article  Google Scholar 

  • Boonstra R, Boag PT (1992) Spring declines in Microtus pennsylvanicus and the role of steroid-hormones. J Anim Ecol 61:339–352

    Article  Google Scholar 

  • Boonstra R, Singleton GR (1993) Population declines in the snowshoe hare and the role of stress. Gen Comp Endocrinol 91:126–143

    PubMed  CAS  Article  Google Scholar 

  • Boonstra R, Hik D, Singleton GR, Tinnikov A (1998) The impact of predator-induced stress on the snowshoe hare cycle. Ecol Monogr 79:317–394

    Google Scholar 

  • Boonstra R, Hubbs AH, Lacey EA, McColl CJ (2001) Seasonal changes in glucocorticoid and testosterone concentrations in free-living arctic ground squirrels from the boreal forest of the Yukon. Can J Zool 79:49–58

    Article  Google Scholar 

  • Bortolotti GR, Marchant TA, Blas J, German T (2008) Corticosterone in feathers is a long-term, integrated measure of avian stress physiology. Funct Ecol 22:494–500

    Article  Google Scholar 

  • Bortolotti GR, Marchant TA, Blas J, Cabezas S (2009a) Tracking stress: localisation, deposition and stability of corticosterone in feathers. J Exp Biol 212:1477–1482

    PubMed  CAS  Article  Google Scholar 

  • Bortolotti GR, Mougeot F, Martinez-Padilla J, Webster LMI, Piertney SB (2009b) Physiological stress mediates the honesty of social signals. PLoS ONE 4:e4983. doi:10.1371/journal.pone.0004983

    PubMed  Article  CAS  Google Scholar 

  • Boyce WT, Champoux M, Suomi SJ, Gunnar MR (1995) Salivary cortisol in nursery-reared rhesus monkeys: reactivity to peer interactions and altered circadian activity. Dev Psychobiol 28:257–267

    PubMed  CAS  Article  Google Scholar 

  • Bradley AJ (1987) Stress and mortality in the red-tailed phascogale, Phascogale calura (Marsupialia, Dasyuridae). Gen Comp Endocrinol 67:85–100

    PubMed  CAS  Article  Google Scholar 

  • Bradley AJ, Stoddart DM (1993) The dorsal paracloacal gland and its relationship with seasonal changes in cutaneous scent gland morphology and plasma androgen in the marsupial sugar glider (Petaurus breviceps; Marsupialia: Petauridae). J Zool Lond 229:331–346

    Article  Google Scholar 

  • Bradshaw D (2003) Vertebrate ecophysiology—an introduction to its principles and applications. Cambridge University Press, Cambridge

    Google Scholar 

  • Breuner CW, Orchinik M (2001) Seasonal regulation of membrane and intracellular corticosteroid receptors in the house sparrow brain. J Neuroendocrinol 13:412–420

    PubMed  CAS  Article  Google Scholar 

  • Breuner CW, Orchinik M (2002) Plasma binding proteins as mediators of corticosteroid action in vertebrates. J Endocrinol 175:99–112

    PubMed  CAS  Article  Google Scholar 

  • Breuner CW, Lynn SE, Julian GE, Cornelius JM, Heidinger BJ, Love OP, Sprague RS, Wada H, Whitman BA (2006) Plasma-binding globulins and acute stress response. Horm Metab Res 38:260–268

    PubMed  CAS  Article  Google Scholar 

  • Buchanan KL, Goldsmith AR (2004) Noninvasive endocrine data for behavioural studies: the importance of validation. Anim Behav 67:183–185

    Article  Google Scholar 

  • Busch DS, Hayward LS (2009) Stress in a conservation context: a discussion of glucocorticoid actions and how levels change with conservation-relevant variables. Biol Conserv 142:2844–2853

    Article  Google Scholar 

  • Butler WR, Des Bordes CK (1980) Radioimmunoassay technique for measuring cortisol in milk. J Dairy Sci 63:474–477

    PubMed  CAS  Article  Google Scholar 

  • Cash WB, Holberton RL, Knight SS (1997) Corticosterone secretion in response to capture and handling in free-living red-eared slider turtles. Gen Comp Endocrinol 108:427–433

    PubMed  CAS  Article  Google Scholar 

  • Casolini P, Cigliana G, Alema GS, Ruggieri V, Angelucci L, Catalani A (1997) Effect of increased maternal corticosterone during lactation on hippocampal corticosteroid receptors, stress response and learning in offspring in the early stages of life. Neuroscience 79:1005–1012

    PubMed  CAS  Article  Google Scholar 

  • Catalani A, Casolini P, Scaccianoce S, Patacchioli FR, Spinozzi P, Angelucci L (2000) Maternal corticosterone during lactation permanently affects brain receptors, stress response and behaviour in rat progeny. Neuroscience 100:319–325

    PubMed  CAS  Article  Google Scholar 

  • Chang K, Chiou WL (1976) Interactions between drugs and saliva-stimulating parafilm and their implications in measurements of saliva drug levels. Res Commun Chem Pathol Pharmacol 13:357–360

    PubMed  CAS  Google Scholar 

  • Chard T (1995) An introduction to radioimmunoassay and related techniques. Elsevier, New York

    Google Scholar 

  • Charlier TD, Underhill C, Hammond GL, Soma K (2009) Effects of aggressive encounters on plasma corticosteroid-binding globulin and its ligands in white-crowned sparrows. Horm Behav 56:339–347

    PubMed  CAS  Article  Google Scholar 

  • Chen Ym, Cintron NM, Whitson PA (1992) Long-term storage of salivary cortisol samples at room temperature. Clin Chem 38:304

    PubMed  CAS  Google Scholar 

  • Chin EH, Love OP, Verspoor JJ, Williams TD, Rowley K, Burness G (2009) Juveniles exposed to embryonic corticosterone have enhanced flight performance. Proc R Soc Lond B 276:499–505

    Article  Google Scholar 

  • Clinchy M, Zanette L, Boonstra R, Wingfield JC, Smith JNM (2004) Balancing food and predator pressure induces chronic stress in songbirds. Proc R Soc Lond B 271:2473–2479

    Article  Google Scholar 

  • Cone EJ (1996) Mechanisms of drug incorporation into hair. Ther Drug Monit 18:438–443

    PubMed  CAS  Article  Google Scholar 

  • Creel S (2001) Social dominance and stress hormones. Trends Ecol Evol 16:491–497

    Article  Google Scholar 

  • Creel S, Fox JE, Hardy A, Sands J, Garrott B, Peterson RO (2002) Snowmobile activity and glucocorticoid stress responses in wolves and elk. Conserv Biol 16:809–814

    Article  Google Scholar 

  • Cross N, Rogers LJ (2004) Diurnal cycle in salivary cortisol levels in common marmosets. Dev Psychobiol 45:134–139

    PubMed  CAS  Article  Google Scholar 

  • Cyr N, Romero LM (2007) Chronic stress in free-living European starlings reduces corticosterone concentrations and reproductive success. Gen Comp Endocrinol 151:82–89

    PubMed  CAS  Article  Google Scholar 

  • Cyr NC, Romero LM (2009) Identifying hormonal habituation in field studies of stress. Gen Comp Endocrinol 161:295–303

    PubMed  CAS  Article  Google Scholar 

  • Dallman MF, Bhatnagar S (2001) Chronis stress and energy balance: role of the hypothalmo-pituitary-adrenal axis. In: McEwen BS, Goodman HM (eds) Handbook of physiology; section 7: the endocrine system. Coping with the environment: neural and endocrine mechanisms. Oxford University Press, New York, pp 197–210

    Google Scholar 

  • Dantzer B, McAdam AG, Palme R, Fletcher QE, Boutin S, Humphries MM, Boonstra R (2010) Fecal cortisol metabolite levels in free-ranging North American red squirrels: assay validation and the effects of reproductive condition. Gen Comp Endocrinol 167:279–286

    PubMed  CAS  Article  Google Scholar 

  • Dantzer B, McAdam AG, Palme R, Boutin S, Humphries MM, Boonstra R (2011) Maternal androgens and behaviour in free-ranging North American red squirrels. Anim Behav 81:469–479

    Article  Google Scholar 

  • Davenport MD, Tiefenbacher S, Lutz CK, Novak MA, Meyer JS (2006) Analysis of endogenous cortisol concentrations in the hair of rhesus macaques. Gen Comp Endocrinol 147:255–261

    PubMed  CAS  Article  Google Scholar 

  • De Kloet ER, Vreugdenhil E, Oitzl MS, Joëls M (1998) Brain corticosteroid receptor balance in health and disease. Endocr Rev 19:269–301

    PubMed  Article  Google Scholar 

  • De Kloet ER, Oitzl MS, Joëls M (1999) Stress and cognition: are corticosteroids good or bad guys? Trends Neurosci 22:422–426

    PubMed  Article  Google Scholar 

  • De Kloet ER, Sibug RM, Helmerhorst M, Schmidt M (2005) Stress, genes and the mechanism of programming the brain for later life. Neurosci Biobehav Rev 29:271–281

    PubMed  Article  CAS  Google Scholar 

  • Delehanty B, Boonstra R (2009) Impact of live trapping on stress profiles of Richardson’s ground squirrel (Spermophilus richardsonii). Gen Comp Endocrinol 160:176–182

    PubMed  CAS  Article  Google Scholar 

  • Dloniak SM, French JA, Place NJ, Weldele ML, Glickman SE, Holekamp KE (2004) Non-invasive monitoring of fecal androgens in spotted hyenas (Crocuta crocuta). Gen Comp Endocrinol 135:51–61

    PubMed  CAS  Article  Google Scholar 

  • Dorn LD, Lucke JF, Loucks TL, Berga SL (2007) Salivary cortisol reflects serum cortisol: analysis of circadian profiles. Ann Clin Biochem 44:281–284

    PubMed  CAS  Article  Google Scholar 

  • Eriksson H, Gustafsson JA (1970) Steroids in germfree and conventional rats. Distribution and excretion of labelled pregnenolone and corticosterone in male and female rats. Eur J Biochem 15:132–139

    PubMed  CAS  Article  Google Scholar 

  • Fenske M (1997) The use of salivary cortisol measurements for the non-invasive assessment of adrenal cortical function in guinea pigs. Exp Clin Endocrinol Diabetes 105:163–168

    PubMed  CAS  Article  Google Scholar 

  • Fink G (2007) Encyclopedia of stress, 2nd edn. Elsevier, London

    Google Scholar 

  • Fletcher QE, Boonstra R (2006) Impact of live trapping on the stress response of the meadow vole (Microtus pennsylvanicus). J Zool 270:473–478

    Article  Google Scholar 

  • Foster LB, Dunn RT (1974) Single-antibody technique for radioimmunoassay of cortisol in unextracted serum or plasma. Clin Chem 20:365–368

    PubMed  CAS  Google Scholar 

  • Gagliano M, McCormick MI (2009) Hormonally mediated maternal effects shape offspring survival potential in stressful environments. Oecologia 160:657–665

    PubMed  Article  Google Scholar 

  • Gallagher P, Leitch MM, Massey AE, McAllister-Williams RH, Young AH (2006) Assessing cortisol and dehydroepiandrosterone (DHEA) in saliva: effects of collection method. J Psychopharmacol 20:643–649

    PubMed  CAS  Article  Google Scholar 

  • Ganswindt A, Münscher S, Henley M, Henley S, Heistermann M, Palme R, Thompson P, Bertschinger H (2010) Endocrine correlates of musth and the impact of ecological and social factors in free-ranging African elephants (Loxodonta africana). Horm Behav 57:506–514

    PubMed  CAS  Article  Google Scholar 

  • Garde AH, Hansen AM (2005) Long-term stability of salivary cortisol. Scand J Clin Lab Invest 65:433–436

    PubMed  CAS  Article  Google Scholar 

  • Gist DH, Kaplan ML (1976) Effects of stress and ACTH on plasma corticosterone levels in the Caiman Caiman crocodilus. Gen Comp Endocrinol 28:413–419

    PubMed  CAS  Article  Google Scholar 

  • Gomez A, Jewell E, Walker SL, Brown JL (2004) Use of salivary steroid analyses to assess ovarian cycles in an Indian rhinoceros at the National Zoological Park. Zoo Biol 23:501–512

    CAS  Article  Google Scholar 

  • Gow R, Thomson S, Rieder M, Van Uum S, Koren G (2010) An assessment of cortisol analysis in hair and its clinical applications. Forensic Sci Int 196:32–37

    PubMed  CAS  Article  Google Scholar 

  • Goymann W (2005) Noninvasive monitoring of hormones in bird droppings: physiological validation, sampling, extraction, sex differences, and the influence of diet on hormone metabolite levels. Ann NY Acad Sci 1046:35–53

    PubMed  CAS  Article  Google Scholar 

  • Goymann W, Möstl E, Van’t Hof T, East ML, Hofer H (1999) Noninvasive fecal monitoring of glucocorticoids in spotted hyenas, Crocuta crocuta. Gen Comp Endocrinol 114:340–348

    PubMed  CAS  Article  Google Scholar 

  • Gröschl M (2007) Current status of salivary hormone analysis. Clin Chem 54:1759–1769

    Article  CAS  Google Scholar 

  • Grubb T (1989) Feather growth bars as indicators of nutritional status. Auk 106:314–320

    Google Scholar 

  • Guillette LJ Jr, Cree A, Rooney AA (1995) Biology of stress: interactions with reproduction, immunology and intermediary metabolism. In: Warwick C, Frye FL, Murphy JB (eds) Health and welfare of captive reptiles. Chapman and Hall, London, pp 33–81

    Google Scholar 

  • Hackl R, Bromundt V, Daisley J, Kotrschal K, Möstl E (2003) Distribution and origin of steroid hormones in the yolk of Japanese quail eggs (Coturnix coturnix japonica). J Comp Physiol B 173:327–331

    PubMed  CAS  Article  Google Scholar 

  • Hammond GL (1995) Potential functions of plasma steroid-binding proteins. Trends Endocrinol Metab 6:298–304

    PubMed  CAS  Article  Google Scholar 

  • Hammond GL, Lähteenmäki PL (1983) A versatile method for the determination of serum cortisol binding globulin and sex-hormone binding globulin binding-capacities. Clin Chim Acta 132:101–110

    PubMed  CAS  Article  Google Scholar 

  • Handa RJ, Burgess LH, Kerr JE, O’keefe JA (1994) Gonadal steroid hormone receptors and sex differences in the hypothalamo-pituitary-adrenal axis. Horm Behav 28:464–476

    PubMed  CAS  Article  Google Scholar 

  • Handasyde KA, McDonald IR, Evans BK (2003) Plasma glucocorticoid concentrations in free-ranging platypuses (Ornithorhynchus anatinus): response to capture and patterns in relation to reproduction. Comp Biochem Physiol A 136:895–902

    CAS  Article  Google Scholar 

  • Harlow HJ, Lindzey FG, Van Sicke WD, Gern WA (1992) Stress response of cougars to nonlethal pursuit by hunters. Can J Zool 70:136–139

    Article  Google Scholar 

  • Hellhammer DH, Wüst S, Kudielka BM (2009) Salivary cortisol as a biomarker in stress research. Psychoneuroendocrinology 34:163–171

    PubMed  CAS  Article  Google Scholar 

  • Hem A, Smith AJ, Solberg P (1998) Saphenous vein puncture for blood sampling of the mouse, rat, hamster, gerbil, guinea pig, ferret and mink. Lab Anim 32:364–368

    PubMed  CAS  Article  Google Scholar 

  • Henriksen R, Rettenbacher S, Groothuis TGG (2011) Prenatal stress in birds: what do we know and how does this relate to research in mammals? Neurosci Biobehav Rev (invited review, under revision)

  • Hirschenhauser K, Kotrschal K, Möstl E (2005) Synthesis of measuring steroid metabolites in goose feces. Ann NY Acad Sci 1046:138–153

    PubMed  CAS  Article  Google Scholar 

  • Hogg CJ, Vickers ER, Rogers TL (2005) Determination of testosterone in saliva and blow of bottlenose dolphins (Tursiops truncatus) using liquid chromatography-mass spectrometry. J Chromatogr B Anal Technol Biomed Sci 814:339–346

    CAS  Article  Google Scholar 

  • Höld KM, de Boer D, Zuidema J, Maes RA (1995) Evaluation of the Salivette as sampling device for monitoring beta-adrenoceptor blocking drugs in saliva. J Chromatogr B Biomed Appl 663:103–110

    PubMed  Article  Google Scholar 

  • Huber S, Palme R, Arnold W (2003) Effects of season, sex, and sample collection on concentrations of fecal cortisol metabolites in red deer (Cervus elaphus). Gen Comp Endocrinol 130:48–54

    PubMed  CAS  Article  Google Scholar 

  • Hunt KE, Wasser SK (2003) Effect of long-term preservation methods on fecal glucocorticoid concentrations of grizzly bear and African elephant. Physiol Biochem Zool 76:918–928

    PubMed  CAS  Article  Google Scholar 

  • Janczak AM, Torjesen P, Palme R, Bakken M (2007) Effects of stress in hens on the behaviour of their offspring. Appl Anim Beh Sci 107:66–77

    Article  Google Scholar 

  • Jaspers V, Dauwe T, Pinxten R, Bervoets L, Blust R, Eens M (2004) The importance of exogenous contamination on heavy metal levels in bird feathers. A field experiment with free-living great tits, Parus major. J Environ Monit 6:356–360

    PubMed  Article  CAS  Google Scholar 

  • Jessop TS, Tucker AD, Limpus CJ, Whittierd JM (2003) Interactions between ecology, demography, capture stress, and profiles of corticosterone and glucose in a free-living population of Australian freshwater crocodiles. Gen Comp Endocrinol 132:161–170

    PubMed  CAS  Article  Google Scholar 

  • Katz FH, Shannon IL (1964) Identification and significance of parotid fluid corticosteroids. Acta Endocrinol 46:393–403

    PubMed  CAS  Google Scholar 

  • Kenagy GJ, Place NJ (2000) Seasonal changes in plasma glucocorticosteroids of free-living female yellow-pine chipmunks: effects of reproduction and capture and handling. Gen Comp Endocrinol 117:189–199

    PubMed  CAS  Article  Google Scholar 

  • Khan MZ, Altmann J, Isani SS, Yu J (2002) A matter of time: evaluating the storage of fecal samples for steroid analysis. Gen Comp Endocrinol 128:64–67

    Article  CAS  Google Scholar 

  • Kirschbaum C, Hellhammer DH (1989) Salivary cortisol in psychobiological research: an overview. Neuropsychobiology 22:150–169

    PubMed  CAS  Article  Google Scholar 

  • Kirschbaum C, Hellhammer DH (1994) Salivary cortisol in psychoneuroendocrine research: recent developments and applications. Psychoneuroendocrinology 19:313–333

    PubMed  CAS  Article  Google Scholar 

  • Kitaysky AS, Piatt JF, Wingfield JC (2007) Stress hormones link food availability and population processes in seabirds. Mar Ecol Prog Ser 352:245–258

    Article  Google Scholar 

  • Klasing KC (2005) Potential impact of nutritional strategy on noninvasive measurements of hormones in birds. Ann NY Acad Sci 1046:5–16

    PubMed  CAS  Article  Google Scholar 

  • Koren L, Mokady O, Karasov T, Klein J, Koren G, Geffen E (2002) A novel method using hair for determining hormonal levels in wildlife. Anim Behav 63:403–406

    Article  Google Scholar 

  • Koren L, Mokady L, Geffen E (2008) Social status and cortisol levels in singing rock hyraxes. Horm Behav 54:212–216

    PubMed  CAS  Article  Google Scholar 

  • Lang SLC, Iverson SJ, Bowen WD (2005) Individual variation in milk composition over lactation in harbour seals (Phoca vitulina) and the potential consequences of intermittent attendance. Can J Zool 83:1525–1531

    CAS  Article  Google Scholar 

  • Lèche A, Busso JM, Hansen C, Navarro JL, Marín RH, Martella BM (2009) Physiological stress in captive greater rheas (Rhea americana): highly sensitive plasma corticosterone response to an ACTH challenge. Gen Comp Endocrinol 162:188–191

    PubMed  Article  CAS  Google Scholar 

  • Lexen E, El-Bahr SM, Sommerfeld-Stur I, Palme R, Möstl E (2008) Monitoring the adrenocortical response to disturbances in sheep by measuring glucocorticoid metabolites in the faeces. Wien Tierärztl Mschr Vet Med Austria 95:64–71

    CAS  Google Scholar 

  • Love OP, Wynne-Edwards KE, Bond L, Williams TD (2008) Determinants of within- and among-clutch variation in yolk corticosterone in the European starling. Horm Behav 53:104–111

    PubMed  CAS  Article  Google Scholar 

  • Lutz CK, Tiefenbacher S, Jorgensen MJ, Meyer JS (2000) Techniques for collecting saliva from awake, unrestrained, adult monkeys for cortisol assay. Am J Primatol 52:93–99

    PubMed  CAS  Article  Google Scholar 

  • Lynch JW, Khan MZ, Altmann J, Nijahira MN, Rubenstein N (2002) Concentrations of four fecal steroids in wild babbons: short-term storage conditions and consequences for data interpretation. Gen Comp Endocrinol 132:264–271

    Article  CAS  Google Scholar 

  • Lynn SE, Porter AJ (2008) Trapping initiates stress response in breeding and nonbreeding house sparrows Passer domesticus: implications for using unmonitored traps in field studies. J Avian Biol 39:87–94

    Article  Google Scholar 

  • Malisch JL, Breuner CW (2010) Steroid-binding proteins and free steroids in birds. Mol Cell Edocrinol 316:42–52

    CAS  Article  Google Scholar 

  • Martin JGA, Réale D (2008) Animal temperament and human disturbance: implications for the response of wildlife to tourism. Behav Process 77:66–72

    CAS  Article  Google Scholar 

  • Mateo JM, Cavigelli SA (2005) A validation of extraction methods for noninvasive sampling of glucocorticoids in free-living ground squirrels. Physiol Biochem Zool 78:1069–1084

    PubMed  CAS  Article  Google Scholar 

  • Matthews SG (2002) Early programming of the hypothalamo-pituitary-adrenal axis. Trends Endocrinol Metab 19:373–380

    Google Scholar 

  • McDonald JE Jr, Fuller TK (2005) Effects of spring acorn availability on black bear diet, milk composition, and cub survival. J Mammal 86:1022–1028

    Article  Google Scholar 

  • McDonald IR, Lee AK, Bradley AJ, Than KA (1981) Endocrine changes in dasyurid marsupials with differing mortality patterns. Gen Comp Endocrinol 44:292–301

    PubMed  CAS  Article  Google Scholar 

  • McDonald IR, Lee AK, Than KA, Martin RW (1986) Failure of glucocorticoid feedback in males of a population of small marsupials (Antechinus swainsonii) during a period of mating. J Endocrinol 108:63–68

    PubMed  CAS  Article  Google Scholar 

  • McKenzie S, Deane EM, Burnett L (2004) Are serum cortisol levels a reliable indicator of wellbeing in the tammar wallaby, Macropus eugenii? J Comp Biochem Physiol A 138:341–348

    CAS  Article  Google Scholar 

  • Millspaugh JJ, Washburn BE (2004) Use of fecal glucocorticoid metabolite measures in conservation biology research: considerations for application and interpretation. Gen Comp Endocrinol 138:189–199

    PubMed  CAS  Article  Google Scholar 

  • Millspaugh JJ, Washburn BE, Milanick MA, Beringer J, Hansen LP, Meyer TM (2002) Non-invasive techniques for stress assessment in white-tailed deer. Wildl Soc Bull 30:899–907

    Google Scholar 

  • Möhle U, Heistermann M, Palme R, Hodges JK (2002) Characterization of urinary and fecal metabolites of testosterone and their measurement for assessing gonadal endocrine function in male nonhuman primates. Gen Comp Endocrinol 129:135–145

    PubMed  Article  Google Scholar 

  • Monclús R, Palomares F, Tablado Z, Martínez-Fontúrbel A, Palme R (2009) Testing the threat-sensitive predator avoidance hypothesis: physiological responses and predator pressure in wild rabbits. Oecologia 158:615–623

    PubMed  Article  Google Scholar 

  • Mormede P, Andanson S, Auperin B, Beerda B, Guemene D, Malnikvist J, Manteca X, Manteuffel G, Prunet P, van Reenen CG, Richard S, Veissier I (2007) Exploration of the hypothalamic-pituitary-adrenal function as a tool to evaluate animal welfare. Physiol Behav 92:317–339

    PubMed  CAS  Article  Google Scholar 

  • Möstl E, Palme R (2002) Hormones as indicators of stress. Domest Anim Endocrinol 23:67–74

    PubMed  Article  Google Scholar 

  • Möstl E, Messman S, Bagu E, Robia C, Palme R (1999) Measurement of glucocorticoid metabolite concentrations in faeces of domestic livestock. J Vet Med A 46:621–632

    Article  Google Scholar 

  • Möstl E, Rettenbacher S, Palme R (2005) Measurement of corticosterone metabolites in birds’ droppings: an analytical approach. Ann NY Acad Sci 1046:17–34

    PubMed  Article  CAS  Google Scholar 

  • Mougeot F, Martinez-Padilla J, Bortolotti GR, Webster MI, Piertney SB (2009) Physiological stress links parasites to carotenoid-based colour signals. J Evol Biol 23:643–650

    Article  CAS  Google Scholar 

  • Mueller C, Jenni-Eiermann S, Blondel J, Perret P, Caro SP, Lambrechts M, Jenni L (2006) Effect of human presence and handling on circulating corticosterone levels in breeding blue tits (Parus caeruleus). Gen Comp Endocrinol 148:163–171

    CAS  Article  Google Scholar 

  • Newman AEM, Pradhan DS, Soma KK (2008a) Dehydroepiandrosterone and corticosterone are regulated by season and acute stress in a wild songbird: jugular versus brachial plasma. Endocrinology 149:2537–2545

    PubMed  CAS  Article  Google Scholar 

  • Newman AEM, Chin EH, Schmidt KL, Bond L, Wynne-Edwards KE, Soma KK (2008b) Analysis of steroids in songbird plasma and brain by coupling solid phase extraction to radioimmunoassay. Gen Comp Endocrinol 155:503–510

    PubMed  CAS  Article  Google Scholar 

  • Orchinik M, Hastings N, Witt D, McEwen BS (1997) High affinity binding of corticosterone to mammalian neuronal membranes: possible role of corticosteroid binding globulin. J Steroid Biochem Mol Biol 60:229–236

    PubMed  CAS  Article  Google Scholar 

  • Owen D, Marcus HA, Matthews SG (2005) Maternal adversity, glucocorticoids and programming of neuroendocrine function and behaviour. Neurosci Biobehav Rev 29:209–226

    PubMed  CAS  Article  Google Scholar 

  • Palme R (2005) Measuring fecal steroids: guidelines for practical application. Ann NY Acad Sci 1046:75–80

    PubMed  CAS  Article  Google Scholar 

  • Palme R, Möstl E (1997) Measurement of cortisol metabolites in faeces of sheep as a parameter of cortisol concentration in blood. Z Saugetierkd Int J Mammal Biol 62(Suppl 2):192–197

    Google Scholar 

  • Palme R, Fischer P, Schildorfer H, Ismail MN (1996) Excretion of infused 14C-steroid hormones via faeces and urine in domestic livestock. Anim Reprod Sci 43:43–63

    CAS  Article  Google Scholar 

  • Palme R, Rettenbacher S, Touma C, El-Bahr SM, Möstl E (2005) Stress hormones in mammals and birds: comparative aspects regarding metabolism, excretion, and noninvasive measurement in fecal samples. Ann NY Acad Sci 1040:162–171

    PubMed  CAS  Article  Google Scholar 

  • Paul MJ, George NT, Zucker I, Butler MP (2007) Photoperiodic and hormonal influences on fur density and regrowth in two hamster species. Am J Physiol Reg Integr Comp Physiol 293:2363–2369

    Article  CAS  Google Scholar 

  • Pearson BL, Judge PG, Reeder DM (2008) Effectiveness of saliva collection and enzyme-immunoassay for the quantification of cortisol in socially housed baboons. Am J Primatol 70:1145–1151

    PubMed  CAS  Article  Google Scholar 

  • Place NJ, Kenagy GJ (2000) Seasonal changes in plasma testosterone and glucocorticosteroids in free-living male yellow-pine chipmunks and the response to capture and handling. J Comp Physiol B 170:245–251

    PubMed  CAS  Article  Google Scholar 

  • Rash JM, Jerkunica I, Sgoutas DS (1980) Lipid interference in steroid radioimmunoassay. Clin Chem 26:84–88

    PubMed  CAS  Google Scholar 

  • Raul JS, Cirimele V, Ludes B, Kintz P (2004) Detection of physiological concentrations of cortisol and cortisone in human hair. Clin Biochem 37:1105–1111

    PubMed  CAS  Article  Google Scholar 

  • Reeder DM, Kramer KM (2005) Stress in free-ranging mammals: integrating physiology, ecology, and natural history. J Mammal 86:225–235

    Article  Google Scholar 

  • Reeder DM, Kosteczko NS, Kunz TH, Widmaier EP (2004) Changes in baseline and stress-induced glucocorticoid levels during the active period in free-ranging male and female little brown myotis, Myotis lucifugus (Chiroptera: Vespertilionidae). Gen Comp Endocrinol 135:260–269

    Article  CAS  Google Scholar 

  • Rehnus M, Hackländer K, Palme R (2009) A non-invasive method for measuring glucocorticoid metabolites (GCM) in Mountain hares (Lepus timidus). Eur J Wildl Res 55:615–620

    Article  Google Scholar 

  • Reimers TJ, McCann JP, Cowan RG (1983) Effects of storage times and temperatures on T3, T4, LH, Prolactin, insulin, cortisol and progesterone concentrations in blood samples from cows. J Anim Sci 57:683–691

    PubMed  CAS  Google Scholar 

  • Rettenbacher S, Möstl E, Hackl R, Palme R (2005) Corticosterone in chicken eggs. Ann NY Acad Sci 1046:193–203

    PubMed  CAS  Article  Google Scholar 

  • Rettenbacher S, Möstl E, Groothuis TGG (2009) Gestagens and glucocorticoids in chicken eggs. Gen Comp Endocrinol 164:125–129

    PubMed  CAS  Article  Google Scholar 

  • Riad-Fahmy D, Read GF, Walker RF, Griffiths K (1982) Steroids in saliva for assessing endocrine function. Endocr Rev 3:367–395

    PubMed  CAS  Article  Google Scholar 

  • Rich EL, Romero ML (2005) Exposure to chronic stress downregulates corticosterone responses to acute stressors. Am J Physiol Regul Integr Comp Physiol 288:R1628–R1636

    PubMed  CAS  Article  Google Scholar 

  • Romero LM (2002) Seasonal changes in plasma glucocorticoid concentrations in free-living vertebrates. Gen Comp Endocrinol 128:1–24

    PubMed  CAS  Article  Google Scholar 

  • Romero LM, Reed JM (2005) Collecting baseline corticosterone samples in the field: is under 3 min good enough? Comp Biochem Physiol A 140:73–79

    Google Scholar 

  • Romero LM, Wingfield JC (1998) Seasonal changes in adrenal sensitivity alter corticosterone levels in Gambel’s white-crowned sparrows (Zonotrichia leucophrys gambelii). Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 119:31–36

    PubMed  CAS  Article  Google Scholar 

  • Romero LM, Meister CJ, Cyr NE, Kenagy GJ, Wingfield JC (2008) Seasonal glucocorticoid responses to capture in wild free-living mammals. Am J Physiol Regul Integr Comp Physiol 294:R614–R622

    PubMed  CAS  Article  Google Scholar 

  • Rosner W (1990) The functions of corticosteroid-binding globulin and sex hormone-binding globulin: recent advances. Endocr Rev 11:80–91

    PubMed  CAS  Article  Google Scholar 

  • Sapolsky RM (1983) Individual differences in cortisol secretory patterns in the wild baboon: role of negative feedback sensitivity. Endocrinology 113:2263–2267

    PubMed  CAS  Article  Google Scholar 

  • Sapolsky RM (1992) Neuroendocrinology of the stress-response. In: Becker JB, Breedlove SM, Crews D (eds) Behavioural endocrinology. MIT Press, Cambridge, pp 287–324

    Google Scholar 

  • Sapolsky RM (1993) Endocrinology alfresco: psychoendocrine studies of wild baboons. Recent Prog Horm Res 48:437–468

    PubMed  CAS  Google Scholar 

  • Sapolsky RM, Share LJ (1994) Rank-related differences in cardiovascular function among wild baboons: role of sensitivity to glucocorticoids. Am J Primatol 32:175–261

    Article  Google Scholar 

  • Sapolsky RM, Romero LM, Munck AU (2000) How do glucocorticoids influence stress responses? integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 21:55–89

    PubMed  CAS  Article  Google Scholar 

  • Sauvé B, Koren G, Walsh G, Tokmakejian S, Van Uum SHM (2007) Measurement of cortisol in human hair as a biomarker of systemic exposure. Clin Invest Med 30:E183–E191

    PubMed  Google Scholar 

  • Scott AP, Hirschenhauser K, Bender N, Oliveira R, Earley RL, Sebire M, Ellis T, Pavlidis M, Hubbard PC, Huertas M, Canario A (2008) Non-invasive measurement of steroids in fish-holding water: important considerations when applying the procedure to behaviour studies. Behaviour 145:1307–1328

    Article  Google Scholar 

  • Seckl JR (2004) Prenatal glucocorticoids and long-term programming. Eur J Endocrinol 151:U49–U62

    PubMed  CAS  Article  Google Scholar 

  • Sergent N, Rogers T, Cunningham M (2004) Influence of biological and ecological factors on hematological values in wild little penguins, Eudyptula minor. Comp Biochem Physiol A 138:333–339

    CAS  Article  Google Scholar 

  • Sernia C, Bradley AJ, McDonald IR (1979) High affinity binding of adrenocortical and gonadal steroids by plasma proteins of Australian marsupials. Gen Comp Endocrinol 38:496–503

    PubMed  CAS  Article  Google Scholar 

  • Sharpley CF, Kauter KG, McFarlane JR (2009) An initial exploration of in vivo hair cortisol response to a brief pain stressor: latency, localization and independence effects. Physiol Res 58:757–761

    PubMed  CAS  Google Scholar 

  • Sheriff MJ, Bosson CO, Krebs CJ, Boonstra R (2009a) A non-invasive technique for measuring fecal cortisol metabolites in snowshoe hares (Lepus americanus). J Comp Physiol B 179:305–313

    PubMed  CAS  Article  Google Scholar 

  • Sheriff MJ, Krebs CJ, Boonstra R (2009b) The sensitive hare: sublethal effects of predator stress on reproduction in snowshoe hares. J Anim Ecol 78:1249–1258

    PubMed  Article  Google Scholar 

  • Sheriff MJ, Krebs CJ, Boonstra R (2010a) The ghosts of predators past: population cycles and the role of maternal programming under fluctuating predation risk. Ecology 91:2983–2994

    PubMed  Article  Google Scholar 

  • Sheriff MJ, Krebs CJ, Boonstra R (2010b) Assessing stress in animal populations: do fecal and plasma glucocorticoids tell the same story? Gen Comp Endocrinol 166:614–619

    PubMed  CAS  Article  Google Scholar 

  • Sheriff MJ, Krebs CJ, Boonstra R (2011) From process to pattern: how fluctuating predation risk impacts the stress axis of the snowshoe hares during the 10-year cycle. Oecologia. doi:10.1007/s00442-011-1907-2

  • Shimozuru M, Kikusui T, Takeuchi Y, Mori Y (2006) Scent-marking and sexual activity may reflect social hierarchy among group-living male Mongolian gerbils (Meriones unguiculatus). Physiol Behav 89:644–649

    PubMed  CAS  Article  Google Scholar 

  • Silverin B (1986) Corticosterone-binding proteins and behavioral-effects of high plasma-levels of corticosterone during the breeding period in the pied flycatcher. Gen Comp Endocrinol 64:67–74

    PubMed  CAS  Article  Google Scholar 

  • Singer CJ, Khan MS, Rosner W (1988) Characteristics of the binding of corticosteroid-binding globulin to rat cell membranes. Endocrinology 122:89–96

    PubMed  CAS  Article  Google Scholar 

  • Smith RE, Maguire JA, Stein-Oakley AN, Sasano H, Takahashi K, Fukushima K, Krozowski ZS (1996) Localization of 11 beta-hydroxysteroid dehydrogenase type 11 in human epithelial tissues. J Clin Endocrinol Metab 81:3244–3248

    PubMed  CAS  Article  Google Scholar 

  • Stroud LR, Solomon C, Shehassa E, Papandonatos G, Niaura R, Lipsitt LP, LeWinn K, Buka L (2007) Long-term stability of maternal prenatal steroid hormones from the National Collaborative Perinatal Project: still valid after all these years. Psychoneuroendocrinology 32:140–150

    PubMed  CAS  Article  Google Scholar 

  • Taylor W (1971) The excretion of steroid hormone metabolites in bile and feces. Vitam Horm 29:201–285

    PubMed  CAS  Article  Google Scholar 

  • Terio KA, Brown JL, Moreland R, Munson L (2002) Comparison of different drying and storage methods on quantifiable concentrations of fecal steroids in the cheetah. Zoo Biol 21:119–134

    Article  CAS  Google Scholar 

  • Thiel D, Jenni-Eiermann S, Braunisch V, Palme R, Jenni L (2008) Ski tourism affects habitat use and evokes a physiological stress response in capercaillie Tetrao urogallus: a new methodological approach. J Appl Ecol 45:845–853

    Article  Google Scholar 

  • Touma C, Palme R (2005) Measuring fecal glucocorticoid metabolites in mammals and birds: the importance of validation. Ann NY Acad Sci 1046:54–74

    PubMed  CAS  Article  Google Scholar 

  • Touma C, Sachser N, Möstl E, Palme R (2003) Effects of sex and time of day on metabolism and excretion of corticosterone in urine and feces of mice. Gen Comp Endocrinol 130:267–278

    PubMed  CAS  Article  Google Scholar 

  • Trumble SJ, Castellini MA (2002) Blood chemistry, hematology, and morphology of wild harbor seal pups in Alaska. J Wildl Manag 66:1197–1207

    Article  Google Scholar 

  • Umeda T, Hiramatsu R, Iwaoka T, Shimada T, Miura F, Sato T (1981) Use of saliva for monitoring unbound free cortisol levels in serum. Clin Chim Acta 110:245–253

    PubMed  CAS  Article  Google Scholar 

  • Van den Hauwe O, Dumoulin F, Eliot C, Peteghem Van (2005) Detection of synthetic glucocorticoid residues in cattle tissue and hair samples after a single dose administration using LC-MC/MC. J Chromatogr B 817:215–223

    Article  CAS  Google Scholar 

  • Veloso C, Place NJ, Kenagy GJ (2003) Milk composition of free-living yellow-pine chipmunks (Tamias amoenus): temporal variation during lactation. J Comp Biochem and Physiol A 134:387–392

    Article  Google Scholar 

  • Vining RF, McGinley RA, Maksvytis JJ, Ho KY (1983) Salivary cortisol: a better measure of adrenal cortisol function than serum cortisol. Ann Clin Biochem 20:329–336

    PubMed  CAS  Google Scholar 

  • Vinson GP, Whitehourse BJ, Hinson JP (2007) Adrenal cortex. In: Fink G (ed) Encyclopedia of stress, 2nd edn. Elsevier, London, pp 39–46

    Google Scholar 

  • Voight CC, Faβbender M, Dehnhard M, Wibbelt G, Jewgenow K, Hofer H, Schaub GA (2004) Validation of a minimally invasive blood-sampling technique for the analysis of hormones in domestic rabbits, Oryctolagus cuniculus (Lagomorpha). Gen Comp Endocrinol 135:100–107

    Article  CAS  Google Scholar 

  • Wada H, Hahn TP, Breuner CW (2007) Development of stress reactivity in white crowned sparrow nestlings: total corticosterone response increases with age, while free corticosterone response remains low. Gen Comp Endocrinol 150:405–413

    PubMed  CAS  Article  Google Scholar 

  • Walker SL, Smith RF, Jones DN, Routly JE, Dobson H (2008) Chronic stress, hormone profiles and estrus intensity in dairy cattle. Horm Behav 53:493–501

    PubMed  CAS  Article  Google Scholar 

  • Warner DA, Radder RS, Shine R (2009) Corticosterone exposure during embryonic development affects offspring growth and sex ratios in opposing directions in two lizard species with environmental sex determination. Physiol Biochem Zool 82:363–371

    PubMed  Article  Google Scholar 

  • Washburn BE, Millspaugh JJ (2002) Effects of simulated environmental conditions on glucocorticoid metabolite measurements in white-tailed deer feces. Gen Comp Endocrinol 127:217–222

    PubMed  CAS  Article  Google Scholar 

  • Washburn BE, Millspaugh JJ, Schulz JH, Jones SB, Mong T (2003) Using fecal glucocorticoids for stress assessment in mourning doves. Condor 105:696–706

    Article  Google Scholar 

  • Wasser SK, Hunt KE (2005) Noninvasive measures of reproductive function and disturbance in the barred owl, great horned owl, and northern spotted owl. Ann NY Acad Sci 1046:109–137

    PubMed  CAS  Article  Google Scholar 

  • Wasser SK, Risler L, Steiner RA (1988) Excreted steroids in primate feces over the menstrual cycle and pregnancy. Biol Reprod 39:862–872

    PubMed  CAS  Article  Google Scholar 

  • Wasser SK, Thomas R, Nair PP, Guidry C, Southers J, Lucas J, Wildt DE, Monfort SL (1993) Effects of dietary fiber on faecal steroid measurements in baboons (Papio cynocephalus cynocephalus). J Reprod Fertil 101:213–220

    Google Scholar 

  • Wasser SK, Bevis K, King G, Hanson E (1997) Noninvasive physiological measures of disturbance in the northern spotted owl. Conserv Biol 11:1019–1022

    Article  Google Scholar 

  • Wasser SK, Hunt KE, Brown JL, Cooper K, Crockett CM, Bechert U, Millspaugh JJ, Larson S, Monfort SL (2000) A generalized fecal glucocorticoid assay for use in a diverse assay of non-domestic mammalian and avian species. Gen Comp Endocrinol 120:260–275

    PubMed  CAS  Article  Google Scholar 

  • Webb AH, Allert JA, Kappenman KM, Marcos J, Feist GW, Schreck CB, Shackleton CH (2007) Identification of plasma glucocorticoids in pallid sturgeon in response to stress. Gen Comp Endocrinol 154:98–104

    PubMed  CAS  Article  Google Scholar 

  • Wendelaar Bonga SE (1997) The stress response in fish. Physiol Rev 77:591–625

    PubMed  CAS  Google Scholar 

  • Westphal U (1971) Steroid–protein interactions: monographs on endocrinology, vol 4. Springer, Berlin

    Google Scholar 

  • Wikelski M, Romero LM (2003) Body size, performance and fitness in Galapagos marine iguanas. Integr Comp Biol 43:376–386

    PubMed  Article  Google Scholar 

  • Wimsatt GR, O’shea TJ, Ellison LE, Pearce RD, Price VR (2005) Anesthesia and blood sampling of wild big brown bats (Eptesicus fuscus) with an assessment of impacts on survival. J Wildl Dis 41:87–95

    PubMed  Google Scholar 

  • Wingfield JC (2003) Control of behavioural strategies for capricious environments. Anim Behav 66:807–816

    Article  Google Scholar 

  • Wingfield JC, Romero LM (2001) Adrenocortical responses to stress and their modulation in free-living vertebrates. In: McEwen BS (ed) Handbook of physiology, section 7: the endocrine system. Coping with the environment: neural and endocrine mechanisms. Oxford University Press, Oxford, pp 211–236

    Google Scholar 

  • Wingfield JC, Sapolsky RM (2003) Reproduction and resistance to stress: when and how. J Neuroendocrinol 15:711–724

    PubMed  CAS  Article  Google Scholar 

  • Wingfield JC, Moore MC, Farner DS (1983) Endocrine responses to increment weather in naturally breeding population of white-crowned sparrows (Zonotrichia leucophrys pugetensis). Auk 100:56–62

    Google Scholar 

  • Wingfield JC, Vleck CM, Moore MC (1992) Seasonal changes in the adrenocortical response to stress in birds of the Sonoran Desert. J Exp Zool 264:419–428

    PubMed  CAS  Article  Google Scholar 

  • Wingfield JC, Maney DL, Breuner CW, Jacobs JD, Lynn S, Ramenofsky M, Richardson RD (1998) Ecological bases of hormone-behavior interactions: the “emergency life history stage”. Am Zool 38:191–206

    CAS  Google Scholar 

  • Wingfield JC, Owen-Ashley N, Benowitz-Fredericks ZM, Lynn SE, Hahn TP, Wada H, Breuner C, Meddle SL, Romero LM (2004) Arctic spring: the arrival biology of migrant birds. Acta Zool Sin 50:948–960

    CAS  Google Scholar 

  • Wood P (2009) Salivary steroid assays—research or routine? Ann Clin Biochem 46:183–196

    PubMed  CAS  Article  Google Scholar 

  • Yaneva M, Mosnier-Pudar H, Dugue MA, Grabar S, Fulla Y, Bertagna X (2004) Midnight salivary cortisol for the initial diagnosis of Cushing’s syndrome of various causes. J Clin Endocrinol Metab 89:3345–3351

    PubMed  CAS  Article  Google Scholar 

  • Zarrow MX, Philpott JE, Denenberg VH (1970) Passage of 14C-4-corticosterone from the rat mother to the foetus and neonate. Nature 226:1058–1059

    PubMed  CAS  Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. C.T. Williams and Dr. T. Jessop for their valuable comments during the writing of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Sheriff.

Additional information

Communicated by Mark Chappell.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sheriff, M.J., Dantzer, B., Delehanty, B. et al. Measuring stress in wildlife: techniques for quantifying glucocorticoids. Oecologia 166, 869–887 (2011). https://doi.org/10.1007/s00442-011-1943-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-011-1943-y

Keywords

  • Glucocorticoids
  • Stress response
  • Salivary glucocorticoids
  • Fecal glucocorticoid metabolites
  • Hair and feather glucocorticoids