Skip to main content
Log in

Invasive plant species alters consumer behavior by providing refuge from predation

  • Plant-Animal interactions - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Understanding the effects of invasive plants on native consumers is important because consumer-mediated indirect effects have the potential to alter the dynamics of coexistence in native communities. Invasive plants may promote changes in consumer pressure due to changes in protective cover (i.e., the architectural complexity of the invaded habitat) and in food availability (i.e., subsidies of fruits and seeds). No experimental studies have evaluated the relative interplay of these two effects. In a factorial experiment, we manipulated cover and food provided by the invasive shrub Amur honeysuckle (Lonicera maackii) to evaluate whether this plant alters the foraging activity of native mammals. Using tracking plates to quantify mammalian foraging activity, we found that removal of honeysuckle cover, rather than changes in the fruit resources it provides, reduced the activity of important seed consumers, mice in the genus Peromyscus. Two mesopredators, Procyon lotor and Didelphis virginiana, were also affected. Moreover, we found rodents used L. maackii for cover only on cloudless nights, indicating that the effect of honeysuckle was weather-dependent. Our work provides experimental evidence that this invasive plant species changes habitat characteristics, and in so doing alters the behavior of small- and medium-sized mammals. Changes in seed predator behavior may lead to cascading effects on the seeds that mice consume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allan BF, Keesing F, Ostfeld RS (2003) Effect of forest fragmentation on Lyme disease risk. Conserv Biol 17:267–272. doi:10.1046/j.1523-1739.2003.01260.x

    Article  Google Scholar 

  • Allan BF, Dutra HP, Goessling LS, Barnett K, Chase JM, Marquis RJ, Pang G, Storch GA, Thach RE, Orrock JL (2010) Invasive honeysuckle eradication reduces tick-borne disease risk by altering host dynamics. Proc Natl Acad Sci USA 107:18523–18527. doi:10.1073/pnas.1008362107

    Article  PubMed  CAS  Google Scholar 

  • Anderson CS, Cady AB, Meikle B (2003) Effects of vegetation structure and edge habitat on the density and distribution of white-footed mice (Peromyscus leucopus) in small and large forest patches. Can J Zool 81:897–904. doi:10.1139/z03-074

    Article  Google Scholar 

  • Anderson CS, Meikle DB, Cady AB, Schaefer RL (2006) Annual variation in habitat use by White-footed Mice, Peromyscus leucopus: the effects of forest patch size, edge and surrounding vegetation type. Can Field Nat 120:192–198. doi:10.1139/z03-074

    Google Scholar 

  • Azevedo FCC, Lester V, Gorsuch W, Lariviere S, Wirsing AJ, Murray DL (2006) Dietary breadth and overlap among five sympatric prairie carnivores. J Zool 269:127–135. doi:10.1111/j.1469-7998.2006.00075.x

    Article  Google Scholar 

  • Bartuszevige AM, Hughes MR, Bailer AJ, Gorchov DL (2006) Weather-related patterns of fruit abscission mask patterns of frugivory. Can J Bot 84:869–875. doi:10.1007/s10530-005-3634-2

    Article  Google Scholar 

  • Beasley JC, Devault TL, Retamosa MI, Rhodes OE (2007) A Hierarchical analysis of habitat selection by raccoons in northern Indiana. J Wildl Manag 71:125–1133. doi:10.2193/2006-228

    Google Scholar 

  • Borer ET, Hosseini PR, Seabloom EW, Dobson AP (2007) Pathogen-induced reversal of native dominance in a grassland community. Proc Natl Acad Sci USA 104:5473–5478

    Article  PubMed  CAS  Google Scholar 

  • Bowman GB, Harris LD (1980) Effect of spatial heterogeneity on ground-nest depredation. J Wildl Manag 4:806–813. doi:10.2307/3808308

    Google Scholar 

  • Bradley JE, Marzluff JM (2003) Rodents as nest predators: influences on predatory behavior and consequences to nesting birds. Auk 1120:1180–1187. doi:10.1642/0004-8038(2003)120[1180:RANPIO]2.0.CO;2

    Article  Google Scholar 

  • Brown JS, Morgan RA, Dow BD (1992) Patch use under predation risk: II a test with fox squirrels, Sciurus niger. Ann Zool Fenn 29:37–47

    Google Scholar 

  • Chamberlain MJ, Conner LM, Leopold BD, Hodges KM (2003) Space use and multi-scale habitat selection of adult raccoons in central Mississippi. J Wildl Manag 67:334–340. doi:10.2307/3802775

    Article  Google Scholar 

  • Collier M, Vankat J, Hughes M (2002) Diminished plant richness and abundance below Lonicera maackii, an invasive shrub. Am Mid Nat 147:60–71

    Article  Google Scholar 

  • Connors MJ, Schauber EM, Forbes A, Jones CC, Goodwin BJ, Ostfeld RS (2005) Use of track plates to quantify predation risk at small spatial scales. J Mammal 86:991–996. doi:10.1644/1545-1542(2005)86[991:UOTPTQ]2.0.CO;2

    Article  Google Scholar 

  • Edalgo JA, McChesney EM, Love JP, Anderson JT (2009) Microhabitat use by white-footed mice Peromyscus leucopus in forested and old-field. Curr Zool 55:111–122

    Google Scholar 

  • Elbrock M (2003) Mammal tracks, sign: a guide to North American species. Stackpole, Mechanisburg

    Google Scholar 

  • Elkinton JS, Healy WM, Buonaccorsi JP, Hazzard AM, Smith HR, Liebhold AM (1996) Interactions among gypsy moths, white-footed mice, and acorns. Ecology 77:2332–2342. doi:10.2307/2265735

    Article  Google Scholar 

  • Forseth IN Jr, Innis AF (2004) Kudzu (Pueraria montana): history, physiology, and ecology combine to make a major ecosystem threat. Crit Rev Plant Sci 23:401–413. doi:10.1080/07352680490505150

    Article  Google Scholar 

  • Gehrt S, Fritzell E (1998) Resource distribution, female home range dispersion and male spatial interactions: group structure in a solitary carnivore. Anim Behav 55:1211–1227

    Article  PubMed  Google Scholar 

  • Gorchov DL, Trisel DE (2003) Competitive effects of the invasive shrub, Lonicera maackii (rupr.) Herder (Caprifoliaceae), on the growth and survival of the native tree seedlings. Plant Ecol 166:13–24. doi:10.1023/A:1023208215796

    Article  Google Scholar 

  • Gosper CR, Whelan RJ, French K (2006) The effect of invasive plant management on the rate of removal of vertebrate-dispersed fruits. Plant Ecol 184:351–363. doi:10.1007/s11258-005-9078-z

    Article  Google Scholar 

  • Gould AMA, Gorchov DL (2000) Effects of the exotic invasive shrub Lonicera maackii on the survival and fecundity of three species of native annuals. Am Midl Nat 144:36–50. doi:10.1674/0003-0031(2000)144[0036:EOTEIS]2.0.CO;2

    Article  Google Scholar 

  • Gu L, Hanson PJ, Mac Posy W, Kaiser DP, Yang B, Nemani R, Pallardy SG, Meyers T (2008) The 2007 eastern US spring freezes: increased cold damage in a warming world? Bioscience 5:253–262. doi:10.1641/B580311

    Article  Google Scholar 

  • Hartman K, McCarthy B (2008) Changes in forest structure and species composition following invasion by a non-indigenous shrub, Amur honeysuckle (Lonicera maackii). J Torr Bot Soc 135:245–259

    Article  Google Scholar 

  • Hutchinson TF, Vankat JL (1997) Invasibility and effects of Amur honeysuckle in southwestern Ohio forests. Conserv Biol 11:1117–1124. doi:10.1046/j.1523-1739.1997.96001.x

    Article  Google Scholar 

  • Hutchinson TF, Vankat JL (1999) Landscape structure and spread of the exotic shrub Lonicera maackii (Amur honeysuckle) in southwestern Ohio forests. Am Midl Nat 139:383–390. doi:10.1674/0003-0031(1998)139[0383:LSASOT]2.0.CO;2

    Article  Google Scholar 

  • Ingold JL, Craycraft MJ (1983) Avian frugivory on honeysuckle (Lonicera) in Southwestern Ohio in fall. Ohio J Sci 83:256–258

    Google Scholar 

  • Jones CG, Ostfeld RS, Richard MP, Schauber EM, Wolff JO (1998) Chain reactions linking acorns to gypsy moth outbreaks and Lyme disease risk. Science 279:1023–1026. doi:10.1126/science.279.5353.1023

    Article  PubMed  CAS  Google Scholar 

  • Korpimäki E, Koivunen V, Hakkarainen H (1996) Microhabitat use and behavior of voles under weasel and raptor predation risk: predator facilitation? Behav Ecol 7:30–34. doi:10.1093/beheco/7.1.30

    Article  Google Scholar 

  • Kotler BP (1997) Patch use by gerbils in a risky environment: manipulating food and safety to test four models. Oikos 78:274–282. doi:10.2307/3546294

    Article  Google Scholar 

  • Kotler BP, Brown JS, Hasson O (1991) Factors affecting gerbil foraging behavior and rates of owl predation. Ecology 72:2249–2260. doi:10.2307/1941575

    Article  Google Scholar 

  • Levine JM, Vilá M, D’Antonio CM, Dukes JS, Grigulis K, Lavorel S (2003) Mechanisms underlying the impacts of exotic plant invasions. Proc R Soc Lond B 270:775–781. doi:10.1098/rspb.2003.2327

    Article  Google Scholar 

  • Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation: a review and prospectus. Can J Zool 68:619–640. doi:10.1139/z90-092

    Article  Google Scholar 

  • Littell RC, Milliken GA, Stroup WW, Wolfinger RD, Schabenberger O (2006) SAS for mixed models, 2nd edn. SAS Institute, Cary. doi:10.1080/10543400601001600

    Google Scholar 

  • Luken JO, Goessling N (1995) Seedling distribution and potential persistence of the exotic shrub Lonicera maackii in fragmented forests. Am Midl Nat 133:124–130. doi:10.2307/2426353

    Article  Google Scholar 

  • Luken JO, Thieret JW (1996) Amur honeysuckle its fall from grace. Bioscience 46:18–24. doi:10.2307/1312651

    Article  Google Scholar 

  • Luken JO, Kuddes LM, Tholemeier TC (1997) Response of understory species to gap formation and soil disturbance in Lonicera maackii thickets. Restor Ecol 5:229–235. doi:10.1046/j.1526-100X1997.09727.x

    Article  Google Scholar 

  • Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710. doi:10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2

    Article  Google Scholar 

  • Manson RH, Ostfeld RS, Canham CD (1998) The effects of tree seed and seedling density on predation rates by rodents in old fields. Ecoscience 5:183–190

    Google Scholar 

  • Manson RH, Ostfeld RS, Canham CD (1999) Responses of a small mammal community to heterogeneity along forest—old-field edges. Landscape Ecol 14:355–367. doi:10.1023/A:1008093823391

    Article  Google Scholar 

  • Mattos KJ, Orrock JL (2010) Behavioral consequences of plant invasion: an invasive plant alters rodent anti-predator behavior. Behav Ecol 21:556–561. doi:10.1093/beheco/arq020

    Article  Google Scholar 

  • McCusker C, Ward M, Brawn J (2010) Seasonal responses of avian communities to invasive bush honeysuckles (Lonicera spp). Biol Invasion 12:2459–2470. doi:10.1007/s10530-009-9655-5

    Article  Google Scholar 

  • Meiners SJ (2007) Apparent competition: an impact of exotic shrub invasion on tree regeneration. Biol Invasion 9:849–855. doi:10.1007/s10530-006-9086-5

    Article  Google Scholar 

  • Miller K, Gorchov D (2004) The invasive shrub, Lonicera maackii, reduces growth and fecundity of perennial forest herbs. Oecologia 139:359–375. doi:10.1007/s00442-004-1518-2

    Article  PubMed  Google Scholar 

  • Mohr K, Solveig VP, Jeppesen LL, Bildose M, Leir H (2003) Foraging of multimammate, Mastomys natalensis, under different predation pressure: cover, patch-dependent decisions and density-dependent GUDs. Oikos 100:459–468. doi:10.1034/j.1600-0706.2003.11763.x

    Article  Google Scholar 

  • Noonburg EG, Byers JE (2005) More harm than good: when invader vulnerability to predators enhances impact on native species. Ecology 86:2555–2560. doi:10.1890/05-0143

    Article  Google Scholar 

  • Orrock JL, Danielson BJ (2004) Rodents balancing a variety of risks: invasive fire ants and indirect and direct indicators of predation risk. Oecologia 140:1–6. doi:10.1007/s00442-004-1613-4

    Article  Google Scholar 

  • Orrock JL, Danielson BJ (2009) Temperature and cloud cover, but not predator urine, affect winter foraging of mice. Ethology 115:641–648. doi:10.1111/j.1439-0310.2009.01654.x

    Article  Google Scholar 

  • Orrock JL, Danielson BJ, Brinkerhoff RJ (2004) Rodent foraging is affected by indirect, but not by direct, cues of predation risk. Behav Ecol 15:433–437. doi:10.1093/beheco/arh031

    Article  Google Scholar 

  • Orrock JL, Holt RD, Baskett ML (2010a) Refuge-mediated apparent competition in plant–consumer interactions. Ecol Lett 13:11–20. doi:10.1111/j.1461-0248.2009.01412.x

    Article  PubMed  Google Scholar 

  • Orrock JL, Baskett ML, Holt RD (2010b) Spatial interplay of plant competition and consumer foraging mediate plant coexistence and drive the invasion ratchet. Proc R Soc Lond B 277:3307–3315. doi:10.1098/rspb.2010.0738

    Article  Google Scholar 

  • Ostfeld RS, Manson RH, Canham CD (1997) Effects of rodents on survival of tree seeds and seedlings invading old fields. Ecology 78:1531–1542

    Google Scholar 

  • Prugh LR, Stoner CJ, Epps CW, Bean WT, Ripple WJ, Laliberte AS, Brashares JS (2009) The rise of the mesopredator. Bioscience 59:779–791. doi:10.1525/bio.2009.59.9.9

    Article  Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  • Richardson DM, Allsopp N, D’Antonio CM, Milton SJ, Rejmánek M (2000) Plant invasions—the role of mutualisms. Biol Rev 75:65–93. doi:10.1017/S0006323199005435

    Article  PubMed  CAS  Google Scholar 

  • Rodewald AD, Shustack DP, Hitchcoc LE (2010) Exotic shrubs as ephemeral ecological traps for nesting birds. Biol Invasion 12:33–39. doi:10.1007/s10530-009-9426-3

    Article  Google Scholar 

  • SAS Institute (2000) SAS User’s Guide, Version 9.1.3. SAS Institute, Cary, NC

  • Schmidt KA, Whelan CJ (1999) Effects of exotic Lonicera and Rhamnus on songbird nest predation. Conserv Biol 13:1502–1506. doi:10.1046/j.1523-1739.1999.99050.x

    Article  Google Scholar 

  • Sheley RL, Jacobs JS, Carpinelli MF (1998) Distribution, biology, and management of Diffuse Knapweed (Centaurea diffusa) and Spotted Knapweed (Centaurea maculosa). Weed Technol 12:353–362

    Google Scholar 

  • Staller EL, Palmer WE, Carroll JP, Thornton RP, Sisson DC (2005) Identifying predators at northern bobwhite nests. J Wildlife Manag 69:124–132. doi:10.2193/0022-541X(2005)069<0124%3AIPANBN>2.0.CO%3B2

    Article  Google Scholar 

  • Stansbury CD, Vivian-Smith G (2003) Interactions between frugivorous birds and weeds in Queensland as determined from a survey of birders. Plant Prot Quart 18:157–165

    Google Scholar 

  • Vander Wall SB (2001) The evolutionary ecology of nut dispersal. Bot Rev 67:74–117. doi:10.1007/BF02857850

    Article  Google Scholar 

  • Verdolin JL (2006) Meta-analysis of foraging and predation risk trade-offs in terrestrial systems. Behav Ecol Sociobiol 60:457–464. doi:10.1007/s00265-006-0172-6

    Article  Google Scholar 

  • Wiewel AS, Clark WA, Sovada MA (2007) Assessing small mammal abundance with track-tube indices and mark-recapture population estimates. J Mammal 88:250–260. doi:10.1644/06-MAMM-A-098R1.1

    Article  Google Scholar 

  • Williams CE, Ralley JJ, Taylor DH (1992) Consumption of seeds of the invasive Amur honeysuckle, Lonicera maackii (Rupr.) Maxim., by small mammals. Nat Area J 12:86–89

    Google Scholar 

  • Williams SE, Ward JS, Worthley TE, Stafford KC (2009) Managing japanese barberry (Ranunculales: Berberidaceae) infestations reduces blacklegged tick (Acari: ixodidae) abundance and infection prevalence with Borrelia burgdorferi (Spirochaetales: Spirochaetaceae). Environ Entomol 38:977–984. doi:10.1603/022.038.0404

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank numerous field assistants from various school districts in the St. Louis area that volunteered as field assistants; the Marquis Lab for reading early drafts of this manuscript; Missouri Department of Conservation and John Vogel from Busch Wildlife Conservation Area for helping in the logistics and allowing us to work in their Park. This project was funded by a dissertation improvement grant (NSF # 0710341) and grants from the Webster Groves Nature Study Society and the Whitney R. Harris World Ecology Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humberto P. Dutra.

Additional information

Communicated by Janne Sundell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dutra, H.P., Barnett, K., Reinhardt, J.R. et al. Invasive plant species alters consumer behavior by providing refuge from predation. Oecologia 166, 649–657 (2011). https://doi.org/10.1007/s00442-010-1895-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-010-1895-7

Keywords

Navigation