Skip to main content

Advertisement

Log in

Nitrogen deposition limits photosynthetic response to elevated CO2 differentially in a dioecious species

  • Physiological ecology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Sexual dimorphisms of dioecious plants are important in controlling and maintaining sex ratios under changing climate environments. Yet, little is known about sex-specific responses to elevated CO2 with soil nitrogen (N) deposition. To investigate sex-related physiological and biochemical responses to elevated CO2 with N deposition, Populus cathayana Rehd. was employed as a model species. The cuttings were subjected to two CO2 regimes (350 and 700 μmol mol−1) with two N levels (0 and 5 g N m−2 year−1). Our results showed that elevated CO2 and N deposition separately increased the total number of leaves, leaf area (LA), leaf mass, net photosynthetic rate (P n), light saturated photosynthetic rate (P max), chlorophyll a (Chl a), and chlorophyll a to chlorophyll b ratio (Chl a/b) in both males and females of P. cathayana. However, the effects on LA, leaf mass, P n, P max, Chl a and Chl a/b were weakened under the combined treatment of elevated CO2 and N deposition. Males had higher leaf mass, P n, P max, apparent quantum yield (Φ), carboxylation efficiency (CE), Chl a, Chl a/b, leaf N, and root carbon to N ratio (C/N) than did females under elevated CO2 with N deposition. In contrast to males, females had significantly higher levels of soluble sugars in leaves and greater starch accumulation in roots and stems under the same condition. The results of the present work imply that P. cathayana females are more responsive and suffer from greater negative effects on growth and photosynthetic capacity than do males when grown under elevated CO2 with soil N deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–372. doi:10.1111/j.1469-8137.2004.01224.x

    Article  PubMed  Google Scholar 

  • Allen GA, Antos JA (1988) Relative reproductive effort in males and females of the dioecious shrub Oemleria cerasiformis. Oecologia 76:111–118. doi:10.1007/BF00379608

    Google Scholar 

  • Araya T, Noguchi K, Terashima I (2006) Effects of carbohydrate accumulation on photosynthesis differ between sink and source leaves of Phaseolus vulgaris L. Plant Cell Physiol 47:644–652. doi:10.1093/pcp/pcj033

    Article  CAS  PubMed  Google Scholar 

  • Arnone JA, Gordon JC (1990) Effect of nodulation, nitrogen fixation and CO2 enrichment on the physiology, growth and dry mass allocation of seedlings of Alnus rubra Bong. New Phytol 116:55–66. doi:10.1111/j.1469-8137.1990.tb00510.x

    Article  CAS  Google Scholar 

  • Bae H, Sicher RC (2004) Changes of soluble protein expression and leaf metabolite in Arabidopsis thaliana grown in elevated atmospheric carbon dioxide. Field Crop Res 90:61–73. doi:10.1016/j.fcr.2004.07.005

    Article  Google Scholar 

  • Billes G, Rouhier H, Bottner P (1993) Modifications of the carbon and nitrogen allocations in the plant (Triticum aestivum L.) soil system in response to increased atmospheric CO2 concentration. Plant Soil 157:215–225 10.1007/BF00011050

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  • Bram MR, Quinn JA (2000) Sex expression, sex-specific traits, and the effects of salinity on growth and reproduction of Amaranthus cannabinus (Amaranthaceae), a dioecious annual. Am J Bot 87:1609–1618

    Article  PubMed  Google Scholar 

  • Correia O, Diaz Barradas MC (2000) Ecophysiological differences between male and female plants of Pistacia lentiscus L. Plant Ecol 149:131–142. doi:10.1023/A:1026588326204

    Article  Google Scholar 

  • Cotrufo MF, Ineson P, Scott A (1998) Elevated CO2 reduces the nitrogen concentration of plant tissues. Glob Chang Biol 4:43–54. doi:10.1046/j.1365-2486.1998.00101.x

    Article  Google Scholar 

  • Curtis PS (1996) A meta-analysis of leaf gas exchange and nitrogen in trees grown under elevated carbon dioxide. Plant Cell Environ 19:127–137. doi:10.1111/j.1365-3040.1996.tb00234.x

    Article  Google Scholar 

  • Dawson TE, Ehleringer JR (1993) Gender-specific physiology, carbon isotope discrimination, and habitat distribution in boxelder Acer negundo. Ecology 74:798–815. doi:10.2307/1940807

    Article  Google Scholar 

  • Dawson TE, Geber MA (1999) Dimorphism in physiology and morphology. In: Gerber MA, Dawson TE, Delph LF (eds) Gender and sexual dimorphism in flowering plant. Springer, Berlin, pp 175–216

    Google Scholar 

  • de Graaff MA, van Groenigen KJ, Six J, Hugate B, van Kessel C (2006) Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis. Glob Chang Biol 12:2077–2091. doi:10.1111/j.1365-2486.2006.01240.x

    Article  Google Scholar 

  • de Jong TJ, van der Meijden E (2004) Sex ratio of some long-lived dioecious plants in a sand dune area. Plant Biol 6:616–620. doi:10.1055/s-2004-821177

    Article  PubMed  Google Scholar 

  • Drake BG, Gonzàlez-Meler MA, Long SP (1997) More efficient plants: a consequence of increased atmospheric CO2? Annu Rev Plant Phys 48:609–639. doi:10.1146/annurev.arplant.48.1.609

    Article  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method of determination of sugars and related substances. Anal Chem 28:350–356. doi:10.1021/ac60111a017

    Article  CAS  Google Scholar 

  • Eichelmann H, Oja V, Rasulov B, Padu E, Bichele I, Pettai H, Mols T, Kaspapova I, Vapaavuori E, Laisk A (2004) Photosynthetic parameters of birch (Betula pendula Roth) leaves growing in normal and in CO2- and O3-enriched atmospheres. Plant Cell Environ 27:479–495. doi:10.1111/j.1365-3040.2003.01166.x

    Article  CAS  Google Scholar 

  • Espirito-Santo MM, Madeira BG, Neves FS, Faria MI, Fagundes M, Fernandes GW (2003) Sexual differences in reproductive phenology and their consequences for the demography of Baccharis dracunculifolia (Asteraceae), a dioecious tropical shrub. Ann Bot 91:13–19. doi:10.1093/aob/mcg001

    Article  CAS  PubMed  Google Scholar 

  • Fang Z, Zhao S, Skvortsov AK (2000) Salicaceae. In: Wu Z, Raven PH (eds) Flora of China. Science Press and Missouri Botanical Garden, Beijing/St. Louis, pp 139–274

    Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (2001) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York

    Google Scholar 

  • Juurola E (2003) Biochemical acclimation patterns of Betula pendula and Pinus sylvestris seedlings to elevated carbon dioxide concentrations. Tree Physiol 23:85–95. doi:10.1093/treephys/23.2.85

    CAS  PubMed  Google Scholar 

  • Li C, Ren J, Luo J, Lu R (2004) Sex-specific physiological and growth responses to water stress in Hippophae rhamnoides L. populations. Acta Physiol Plant 26:123–129. doi:10.1007/s11738-004-0001-3

    Article  Google Scholar 

  • Li C, Yang Y, Junttila O, Palva ET (2005) Sexual differences in cold acclimation and freezing tolerance development in sea buckthorn (Hippophae rhamnoides L.) ecotypes. Plant Sci 168:1365–1370. doi:10.1016/j.plantsci.2005.02.001

    Article  CAS  Google Scholar 

  • Li C, Xu G, Zang R, Korpelainen H, Berninger F (2007) Sex-related differences in leaf morphological and physiological responses in Hippophae rhamnoides along an altitudinal gradient. Tree Physiol 27:399–406. doi:10.1093/treephys/27.3.399

    CAS  PubMed  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Method Enzymol 148:350–382. doi:10.1016/0076-6879(87)48036-1

    Article  CAS  Google Scholar 

  • Livingston NJ, Guy RD, Sun ZJ, Ethier GJ (1999) The effects of nitrogen stress on the stable carbon isotope composition, productivity and water use efficiency of white spruce (Picea glauca (Moench) Voss) seedlings. Plant Cell Environ 22:281–289. doi:10.1046/j.1365-3040.1999.00400.x

    Article  Google Scholar 

  • Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants FACE the future. Annu Rev Plant Biol 55:591–628. doi:10.1146/annurev.arplant.55.031903.141610

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Wang Y, Peng Y, Korpelainen H, Li C (2006) Genetic diversity of Populus cathayana Rehd populations in southwestern china revealed by ISSR markers. Plant Sci 170:407–412. doi:10.1016/j.plantsci.2005.09.009

    Article  CAS  Google Scholar 

  • Maier CA, Palmroth S, Ward E (2008) Short-term effects of fertilization on photosynthesis and leaf morphology of field-grown loblolly pine following long-term exposure to elevated CO2 concentration. Tree Physiol 28:597–606. doi:10.1093/treephys/28.4.597

    CAS  PubMed  Google Scholar 

  • Mitchell AK (1998) Acclimation of Pacific yew (Taxus brevifolia) foliage to sun and shade. Tree Physiol 18:749–757. doi:10.1093/treephys/18.11.749

    PubMed  Google Scholar 

  • Murray MB, Smith RI, Friend A, Jarvis PG (2000) Effect of elevated [CO2] and varying nutrient application rates on physiology and biomass accumulation of Sitka spruce (Picea sitchensis). Tree Physiol 20:421–434. doi:10.1093/treephys/20.7.421

    PubMed  Google Scholar 

  • Nelson DW, Sommers LE (1982) Total carbon, organic carbon and organic matter. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, Part 2. Chemical and microbiological properties. American Society of Agronomy, Madison, pp 539–579

    Google Scholar 

  • Olsson T, Leverenz JW (1994) Non-uniform stomatal closure and the apparent convexity of the photosynthetic photon flux density response curve. Plant Cell Environ 17:701–710. doi:10.1111/j.1365-3040.1994.tb00162.x

    Article  Google Scholar 

  • Pettersson R, McDonald AJS (1994) Effects of nitrogen supply on the acclimation of photosynthesis to elevated CO2. Photosynth Res 39:389–400. doi:10.1007/BF00014593

    Article  CAS  Google Scholar 

  • Porra RJ, Thompson WA, Kriedmann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394. doi:10.1016/S0005-2728(89)80347-0

    Article  CAS  Google Scholar 

  • Prioul JL, Chartier P (1977) Partitioning of transfer and carboxylation components of intracellular resistance to photosynthetic CO2 fixation: a critical analysis of the methods used. Ann Bot 41:789–800

    Google Scholar 

  • Renner SS, Ricklefs RE (1995) Dioecy and its correlates in the flowering plants. Am J Bot 82:596–606

    Article  Google Scholar 

  • Riikonen J, Holopainen T, Oksanen E, Vapaavuori E (2005) Leaf photosynthetic characteristics of silver birch during three years of exposure to elevated CO2 and O3 in the field. Tree Physiol 25:621–632. doi:10.1093/treephys/25.5.621

    CAS  PubMed  Google Scholar 

  • Rogers A, Humphries SW (2001) A mechanistic evaluation of photosynthetic acclimation at elevated CO2. Glob Chang Biol 6:1005–1011. doi:10.1046/j.1365-2486.2000.00375.x

    Article  Google Scholar 

  • Sakai AK, Weller SG (1999) Gender and sexual dimorphism in flowering plants: a review of terminology, biogeographic patterns, ecological correlates, and phylogenetic approaches. In: Geber MA, Dawson TE, Delph LF (eds) Gender and sexual dimorphism in flowering plants. Springer, Berlin, pp 1–31

    Google Scholar 

  • Sharkey TD, Vanderveer PJ (1989) Stromal phosphate concentration is low during feedback limited photosynthesis. Plant Physiol 91:679–684

    Article  CAS  PubMed  Google Scholar 

  • Stitt M, Krapp A (1999) The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant Cell Environ 22:583–621. doi:10.1046/j.1365-3040.1999.00386.x

    Article  CAS  Google Scholar 

  • Van Oosten JJ, Besford RT (1994) Sugar feeding mimics effect of acclimation to high CO2-rapid down-regulation of Rubisco small subunit transcripts but not the large subunit transcripts. J Plant Physiol 143:306–312

    Google Scholar 

  • Wang X, Curtis PS (2001) Gender-specific responses of Populus tremuloides to atmospheric CO2 enrichment. New Phytol 150:675–684. doi:10.1046/j.1469-8137.2001.00138.x

    Article  CAS  Google Scholar 

  • Wang X, Griffin KL (2003) Sex-specific physiological and growth responses to elevated atmospheric CO2 in Silene latifolia Poiret. Glob Chang Biol 9:612–618. doi:10.1046/j.1365-2486.2003.00615.x

    Article  Google Scholar 

  • Ward JK, Dawson TE, Ehleringer JR (2002) Responses of Acer negundo genders to inter-annul differences in water availability determined from carbon isotope ratios of tree cellulose. Tree Physiol 22:339–346. doi:10.1093/treephys/22.5.339

    Google Scholar 

  • Xu X, Peng G, Wu C, Korpelainen H, Li C (2008a) Drought inhibits photosynthetic capacity more in females than in males of Populus cathayana. Tree Physiol 28:1751–1759. doi:10.1093/treephys/28.11.1751

    PubMed  Google Scholar 

  • Xu X, Yang F, Xiao X, Zhang S, Korpelainen H, Li C (2008b) Sex-specific responses of Populus cathayana to drought and elevated temperatures. Plant Cell Environ 31:850–860. doi:10.1111/j.1365-3040.2008.01799.x

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Duan B, Qiao Y, Wang K, Korpelainen H, Li C (2008) Leaf photosynthesis of Betula albosinensis seedlings as affected by elevated CO2 and planting density. For Ecol Manage 255:1937–1944. doi:10.1016/j.foreco.2007.12.015

    Article  Google Scholar 

  • Zhao H, Li Y, Duan B, Korpelainen H, Li C (2009) Sex-related adaptive responses of Populus cathayana to photoperiod transitions. Plant Cell Environ 32:1401–1411. doi:10.1111/j.1365-3040.2009.02007.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research was supported by the National Natural Science Foundation of China (No. 30771721, 30930075), and the Program of “Knowledge Innovation Engineering” of the Chinese Academy of Sciences (No. KSCX2-YW-Z-1019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunyang Li.

Additional information

Communicated by Andrea Polle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, H., Xu, X., Zhang, Y. et al. Nitrogen deposition limits photosynthetic response to elevated CO2 differentially in a dioecious species. Oecologia 165, 41–54 (2011). https://doi.org/10.1007/s00442-010-1763-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-010-1763-5

Keywords

Navigation