Skip to main content

Advertisement

Log in

Linking environmental and demographic data to predict future population viability of a perennial herb

  • Population ecology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Recent advances in stochastic demography provide tools to examine the importance of random and periodic variation in vital rates for population dynamics. In this study, we explore with simulations the effect of disturbance regime on population dynamics and viability. We collected 7 years of demographic data in three populations of the perennial herb Primula farinosa, and used these data to examine how variation in vital rates affected population viability parameters (stochastic growth rate, λS), and how vital rates were related to weather conditions. Elasticity analysis indicated that the stochastic growth rate was very sensitive to changes in regeneration, quantified as the production, survival, and germination of seeds. In one of the study years, all seedlings and mature plants in the demography plots died. This extinction coincided with the driest summer during the study period. Simulations suggested that a future increase in the frequency of high-mortality years due to climate change would result in reduced population growth rate, and an increased importance of survival in the seed bank for population viability. The results illustrate how the limited demographic data typically available for many natural systems can be used in simulation models to assess how environmental change will affect population viability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams VM, Marsh DM, Knox JS (2005) Importance of the seed bank for population viability and population monitoring in a threatened wetland herb. Biol Conserv 124:425–436

    Article  Google Scholar 

  • Adler PB, HilleRisLambers J (2008) The influence of climate and species composition on the population dynamics of ten prairie forbs. Ecology 89:3049–3060

    Article  Google Scholar 

  • Ågren J, Fortunel C, Ehrlén J (2006) Selection on floral display in insect-pollinated Primula farinosa: effects of vegetation height and litter accumulation. Oecologia 150:225–232

    Article  PubMed  Google Scholar 

  • Andersson S (1988) Limiting factors on seed production in Crepis tectorum ssp. pumila. Acta Phytogeogr Suec 76:9–20

    Google Scholar 

  • Beckage B, Gross LJ, Platt WJ (2006) Modelling responses of pine savannas to climate change and large-scale disturbance. Appl Veg Sci 9:75–82

    Article  Google Scholar 

  • Bengtsson K (1993) Fumana procumbens on Öland—population dynamics of a disjunct species at the northern limit of its range. J Ecol 81:745–758

    Article  Google Scholar 

  • Boyce MS, Haridas CV, Lee CT, NCEAS Stochastic Demography Working Group (2006) Demography in an increasingly variable world. Trends Ecol Evol 21:141–148

    Article  PubMed  Google Scholar 

  • Caswell H (2001) Matrix population models: construction, analysis, and interpretation, 2nd edn. Sinauer, Sunderland

    Google Scholar 

  • Cohen D (1966) Optimizing reproduction in a randomly varying environment. J Theor Biol 12:119–129

    Article  CAS  PubMed  Google Scholar 

  • Cohen D (1967) Optimizing reproduction in a randomly varying environment when a correlation may exist between the conditions at the time a choice has to be made and the subsequent outcome. J Theor Biol 16:1–14

    Article  CAS  PubMed  Google Scholar 

  • Doak DF, Thomson D, Jules ES (2002) Population viability analysis for plants: understanding the demographic consequences of seed banks for population health. In: Beissinger SR, McCullough DR (eds) Population viability analysis. The University of Chicago Press, Chicago

    Google Scholar 

  • Ehrlén J, Lehtilä K (2002) How perennial are perennial plants? Oikos 98:308–322

    Article  Google Scholar 

  • Franco M, Silvertown J (2004) A comparative demography of plants based upon elasticities of vital rates. Ecology 85:531–538

    Article  Google Scholar 

  • Gotelli NJ, Ellison AM (2006) Forecasting extinction risk with nonstationary matrix models. Ecol Appl 16:51–61

    Article  PubMed  Google Scholar 

  • Gross K, Lockwood JR III, Frost CC, Morris WF (1998) Modelling controlled burning and trampling reduction for conservation of Hudsonia montana. Conserv Biol 12:1291–1301

    Article  Google Scholar 

  • Hambler DJ, Dixon JM (2003) Biological flora of the British islands: Primula farinosa L. J Ecol 91:694–705

    Article  Google Scholar 

  • Horvitz CC, Pascarella JB, McMann S, Freedman A, Hofstetter RH (1998) Functional roles of invasive, non-indigenous plants in hurricane-affected subtropical hardwood forests. Ecol Appl 8:947–974

    Article  Google Scholar 

  • Horvitz CC, Tuljapurkar S, Pascarella JB (2005) Plant–animal interactions in random environments: habitat-stage elasticity, seed predators, and hurricanes. Ecology 86:3312–3322

    Article  Google Scholar 

  • Hubbell SP, Foster RB, O'Brien S, Wechsler B, Condit R, Harms K, Wright SJ, Loo de Lau S (1999) Light gaps, recruitment limitation and tree diversity in a Neotropical forest. Science 283:554–557

    Article  CAS  PubMed  Google Scholar 

  • Kalisz S, McPeek MA (1993) Extinction dynamics, population growth and seed banks: an example using an age-structured annual. Oecologia 95:314–320

    Article  Google Scholar 

  • Keith DA, Akcakaya HR, Thuiller W, Midgley GF, Pearson RG, Phillips SJ, Regan HM, Araujo MB, Rebelo TG (2008) Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models. Biol Lett 4:560–563

    Article  PubMed  Google Scholar 

  • Keyantash J, Dracup JA (2002) The quantification of drought: an evaluation of drought indices. Bull Am Meteorol Soc 83:1167–1180

    Google Scholar 

  • Kjellström E, Bärring L, Hansson U, Jones C, Samuelsson P, Rummukainen M, Ullerstig A, Willén U, Wyser K (2005) A 140-year simulation of European climate with the new version of the Rossby Centre regional atmospheric climate model (RCA3). SMHI Reports Meteorology and Climatology No. 108, SMHI, Norrköping, Sweden

  • Lagerberg T (1948) Vilda växter i Norden, 2nd edn. Natur och Kultur, Stockholm

    Google Scholar 

  • Levine JM, McEachern AK, Cowan C (2008) Rainfall effects on rare annual plants. J Ecol 96:795–806

    Article  Google Scholar 

  • Lindborg R, Ehrlén J (2002) Evaluating the extinction risk of a perennial herb: demographic data versus historical records. Conserv Biol 16:683–690

    Article  Google Scholar 

  • Lindenmayer D, Hobbs RJ, Montague-Drake R, Alexandra J, Bennett A, Burgman M, Cale P, Calhoun A, Cramer V, Cullen P, Driscoll D, Fahrig L, Fischer J, Franklin J, Haila Y, Hunter M, Gibbons P, Lake S, Luck G, MacGregor C, McIntyre S, Mac Nally R, Manning A, Miller J, Mooney H, Noss R, Possingham H, Saunders D, Schmiegelow F, Scott M, Simberloff D, Sisk T, Tabor G, Walker B, Wiens J, Woinarski J, Zavaleta E (2008) A checklist for ecological management of landscapes for conservation. Ecol Lett 11:78–91

    PubMed  Google Scholar 

  • Lucas RW, Forseth IN, Casper BB (2008) Using rainout shelters to evaluate climate change effects on the demography of Cryptantha flava. J Ecol 96:514–522

    Article  Google Scholar 

  • Maschinski J, Baggs JE, Quintana-Ascencio PF, Menges ES (2006) Using population viability analysis to predict the effects of climate change on the extinction risk of an endangered limestone endemic shrub, Arizona cliffrose. Conserv Biol 20:218–228

    Article  PubMed  Google Scholar 

  • McCarty JP (2001) Ecological consequences of recent climate change. Conserv Biol 15:320–331

    Article  Google Scholar 

  • Menges ES, Quintana-Ascencio PF (2004) Population viability with fire in Eryngium cuneifolium: deciphering a decade of demographic data. Ecol Monographs 74:79–99

    Article  Google Scholar 

  • Morris WF, Tuljapurkar S, Haridas CV, Menges ES, Horvitz CC, Pfister CA (2006) Sensitivity of the population growth rate to demographic variability within and between phases of the disturbance cycle. Ecol Lett 9:1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Morris WF, Pfister CA, Tuljapurkar S, Haridas CV, Boggs CL, Boyce MS, Bruna EM, Church DR, Coulson T, Doak DF, Forsyth S, Gaillard J-M, Horvitz CC, Kalisz S, Kendall BE, Knight TM, Lee CT, Menges ES (2008) Longevity can buffer plant and animal populations against changing climatic variability. Ecology 89:19–25

    Article  PubMed  Google Scholar 

  • Mouillot F, Rambal S, Joffre R (2002) Simulating climate change impacts on fire frequency and vegetation dynamics in a Mediterranean-type ecosystem. Glob Change Biol 8:423–437

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Post E, Pedersen C (2008) Opposing plant community responses to warming with and without herbivores. Proc Natl Acad Sci USA 105:12353–12358

    Article  CAS  PubMed  Google Scholar 

  • Rosén E (1982) Vegetation development and sheep grazing in limestone grasslands of south Öland, Sweden. Acta Phytogeogr Suec 72:1–104

    Google Scholar 

  • Rosén E (1995) Periodic droughts and long-term dynamics of alvar grassland vegetation on Öland, Sweden. Folia Geobot Phytotax 30:131–140

    Article  Google Scholar 

  • Rosén E, Borgegård S-O (1999) The open cultural landscape. Acta Phytogeogr Suec 84:84–134

    Google Scholar 

  • Rowell DP (2005) A scenario of European climate change for the late twenty-first century: seasonal means and interannual variability. Clim Dyn 25:837–849

    Article  Google Scholar 

  • Silvertown J, Franco M, Pisanty I, Medoza A (1993) Comparative plant demography–relative importance of life-cycle components to the finite rate of increase in woody and herbaceous perennials. J Ecol 81:465–476

    Article  Google Scholar 

  • Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT, Thonicke K, Venevsky S (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Change Biol 9:161–185

    Article  Google Scholar 

  • Smith M, Caswell H, Mettler-Cherry P (2005) Stochastic flood and precipitation regimes and the population dynamics of a threatened floodplain plant. Ecol Appl 15:1036–1052

    Article  Google Scholar 

  • Sterner R, Lundqvist Å (1986) Ölands kärlväxtflora, 2nd edn. Forskningsrådens förlagstjänst, Stockholm, Sweden

    Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, de Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148

    Article  CAS  PubMed  Google Scholar 

  • Thuiller W, Albert C, Araújo MB, Berry PM, Cabeza M, Guisan A, Hickler T, Midgley GF, Paterson J, Schurr FM, Sykes MT, Zimmermann NE (2008) Predicting global change impacts on plant species’ distributions: future challenges. Perspect Plant Ecol Evol Syst 9:137–152

    Article  Google Scholar 

  • Toräng P, Ehrlén J, Ågren J (2010) Habitat quality and among-population differentiation in reproductive effort and flowering phenology in the perennial herb Primula farinosa. Evol Ecol. doi:10.1007/s10682-009-9327-z

  • Tuljapurkar S, Horvitz CC, Pascarella JB (2003) The many growth rates and elasticities of populations in random environments. Am Nat 162:489–502

    Article  PubMed  Google Scholar 

  • Van Rooy MP (1965) A rainfall anomaly index independent of time and space. Notos 14:43–48

    Google Scholar 

Download references

Acknowledgments

We thank Carol C. Horvitz for sharing MATLAB-code and expertise, Elin Boberg for the plant illustrations in Fig. 1, and Miguel Franco and anonymous reviewers for comments on the manuscript. Financial support from Helge Ax:son Johnsons foundation and Liljewalchs Travel Grant to P.T. and from Formas and the Swedish Research Council to J.E. and J.Å. is acknowledged. The study was conducted in accordance with current Swedish laws.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per Toräng.

Additional information

Communicated by Miguel Franco.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 163 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toräng, P., Ehrlén, J. & Ågren, J. Linking environmental and demographic data to predict future population viability of a perennial herb. Oecologia 163, 99–109 (2010). https://doi.org/10.1007/s00442-009-1552-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-009-1552-1

Keywords

Navigation