Oecologia

, Volume 162, Issue 3, pp 541–547 | Cite as

Activation of the immune system promotes insect dispersal in the wild

  • Jukka Suhonen
  • Johanna Honkavaara
  • Markus J. Rantala
Physiological ecology - Original Paper

Abstract

Dispersal has important ecological and evolutionary consequences but is a poorly understood behaviour. We experimentally tested whether activation of the immune system affects dispersal in male damselflies, Calopteryx virgo, from three natural populations. We show that males that contained an experimentally inserted artificial pathogen, a nylon monofilament implant, had higher dispersal rates and flew further than control males, but not further than sham manipulated males. Our data suggest that dispersal may reduce the risk of further infections if immune system activation indicates high parasite infection risk in the present habitat. We, thus, suggest that parasites may play an important role in the evolution of host dispersal.

Keywords

Calopteryx virgo Damselfly Dispersal Host–parasite interaction Odonata 

References

  1. Åbro A (1996) Gregarine infection of adult Calopteryx virgo L. (Odonata: Zygoptera). J Nat Hist 30:855–859CrossRefGoogle Scholar
  2. Ahlroth P, Alatalo RV, Suhonen J (2009) Reduced dispersal propensity in the wingless waterstrider Aquarius najas in a highly fragmented landscape. Oecologia. doi:10.1007/s00442-009-1457-z
  3. Andres JA, Cordero A (1998) Effects of water mites on the damselfly Ceriagrion tenellum. Ecol Entomol 23:103–109CrossRefGoogle Scholar
  4. Askew RR (1988) The dragonflies of Europe. Harley, LondonGoogle Scholar
  5. Boulinier T, McCoy K, Sorci G (2001) Dispersal and parasitism. In: Clobert J, Danchin E, Dhondt AA, Nichols JD (eds) Dispersal. Oxford University Press, Oxford, pp 169–179Google Scholar
  6. Bowler DE, Benton TG (2005) Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biol Rev 80:205–225CrossRefPubMedGoogle Scholar
  7. Brown CR, Brown MB (1992) Ectoparasitism as a cause of natal dispersal in cliff swallows. Ecology 73:1718–1723CrossRefGoogle Scholar
  8. Clobert J, Danchin E, Dhondt AA, Nichols JD (2001) Dispersal. Oxford University Press, OxfordGoogle Scholar
  9. Comins HN, Hamilton WD, May RM (1980) Evolutionarily stable dispersal strategies. J Theor Biol 82:205–230CrossRefPubMedGoogle Scholar
  10. Conrad KF, Willson KH, Whitfield K, Harvey IF, Thomas CJ, Sherratt TN (2002) Characteristics of dispersing Ischnura elegans and Coenagrion puella (Odonata): age, sex, size, morph and ectoparasitism. Ecography 25:439–445CrossRefGoogle Scholar
  11. Contreras-Garduno J, Cordoba-Aguilar A, Lanz-Mendoza H, Cordero-Rivera A (2009) Territorial behaviour and immunity are mediated by juvenile hormone: the physiological basis of honest signalling? Funct Ecol 23:157–163. doi:10.1111/j.1365-2435.2008.01485.x CrossRefGoogle Scholar
  12. Corbet PS (1999) Dragonflies: behaviour and ecology of Odonata. Harley, EssexGoogle Scholar
  13. Córdoba-Aguilar A, Cordero-Rivera A (2005) Evolution and ecology of calopterygidae (Zygoptera: Odonata): status of knowledge and research perspectives. Neotrop Entomol 34:861–879CrossRefGoogle Scholar
  14. Dixon AFG, Agarwala BK (1999) Ladybird-induced life-history changes in aphids. Proc R Soc Lond B 266:1549–1553CrossRefGoogle Scholar
  15. Forbes MR, Robb T (2008) Testing hypotheses about parasite-mediated selection using odonate hosts. In: Córdoba-Aguilar A (ed) Dragonflies and damselflies. Model organism for ecological and evolutionary research. Oxford University Press, Oxford, pp 175–188CrossRefGoogle Scholar
  16. Forbes MR, Muma KE, Smith BP (2004) Recapture of male and female dragonflies in relation to parasitism by mites, time of season, wing length and wing cell symmetry. Exp Appl Acarol 34:79–93CrossRefPubMedGoogle Scholar
  17. Hamilton WD, May RM (1977) Dispersal in stable habitats. Nature 269:578–581CrossRefGoogle Scholar
  18. Hastings A (1983) Can spatial variation alone lead to selection for dispersal. Theor Popul Biol 24:244–251CrossRefGoogle Scholar
  19. Heeb P, Werner I, Mateman AC, Kolliker M, Brinkhof MWG, Lessells CM, Richner H (1999) Ectoparasite infestation and sex-biased local recruitment of hosts. Nature 400:63–65CrossRefPubMedGoogle Scholar
  20. Holyoak M, Casagrandi R, Nathan R, Revilla E, Spiegel O (2008) Trends and missing parts in the study of movement ecology. Proc Natl Acad Sci USA 105:19060–19065. doi:10.1073/pnas.0800483105 CrossRefPubMedGoogle Scholar
  21. Jaenike J, Benway H, Stevens G (1995) Parasite-induced mortality in mycophagous drosophila. Ecology 76:383–391CrossRefGoogle Scholar
  22. Koskimäki J, Rantala MJ, Taskinen J, Tynkkynen K, Suhonen J (2004) Immunocompetence and resource holding potential in the damselfly, Calopteryx virgo L. Behav Ecol 15:169–173CrossRefGoogle Scholar
  23. Koskimäki J, Rantala MJ, Suhonen J (2009) Wandering males are smaller than territorial males in the damselfly Calopteryx virgo (L.) (Zygoptera: Calopterygidae). Odonatologica 38:159–165Google Scholar
  24. Lee KP, Cory JS, Wilson K, Raubenheimer D, Simpson SJ (2006) Flexible diet choice offsets protein costs of pathogen resistance in a caterpillar. Proc R Soc Lond B 273:823–829. doi:10.1098/rspb.2005.3385 CrossRefGoogle Scholar
  25. Levin SA, Cohen D, Hastings A (1984) Dispersal strategies in patchy environments. Theor Popul Biol 26:165–191CrossRefGoogle Scholar
  26. Marden JH, Cobb JR (2004) Territorial and mating success of dragonflies that vary in muscle power output and presence of gregarine gut parasites. Anim Behav 68:857–865CrossRefGoogle Scholar
  27. Møller AP, Martin-Vivaldi M, Soler JJ (2004) Parasitism, host immune defence and dispersal. J Evol Biol 17:603–612CrossRefPubMedGoogle Scholar
  28. Moret Y, Schmid-Hempel P (2000) Survival for immunity: The price of immune system activation for bumblebee workers. Science 290:1166–1168. doi:10.1126/science.290.5494.1166 CrossRefPubMedGoogle Scholar
  29. Pajunen VI (1966) Aggressive behaviour and territoriality in a population of Calotperyx virgo L. (Odonata: Calopterygidae). Ann Zool Fenn 3:201–214Google Scholar
  30. Plaistow S, Siva-Jothy MT (1996) Energetic constraints and male mate-securing tactics in the damselfly Calopteryx splendens xanthostoma (Charpentier). Proc R Soc Lond B 263:1233–1238CrossRefGoogle Scholar
  31. Rantala MJ, Roff DA (2007) Inbreeding and extreme outbreeding cause sex differences in immune defence and life history traits in Epirrita autumnata. Heredity 98:329–336CrossRefPubMedGoogle Scholar
  32. Rantala MJ, Koskimäki J, Taskinen J, Tynkkynen K, Suhonen J (2000) Immunocompetence, developmental stability and wingspot size in the damselfly Calopteryx splendens L. Proc R Soc Lond B 267:2453–2457CrossRefGoogle Scholar
  33. Rantala MJ, Hovi M, Korkeamäki E, Suhonen J (2001) No trade-off between the size and timing of emergence in the damselfly, Calopteryx virgo L. Ann Zool Fenn 38:117–122Google Scholar
  34. Ronce O (2007) How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu Rev Ecol Evol Syst 38:231–253. doi:10.1146/annurev.ecolsys.38.091206.095611 CrossRefGoogle Scholar
  35. Shields WM (1987) Optimal inbreeding and evolution of philopatry. In: The ecology of animal movement. Clarendon, pp 132–159Google Scholar
  36. Siva-Jothy MT (2000) A mechanistic link between parasite resistance and expression of a sexually selected trait in a damselfly. Proc R Soc Lond B 267:2523–2527. doi:10.1098/rspb.2000.1315 CrossRefGoogle Scholar
  37. Sloggett JJ, Weisser WW (2002) Parasitoids induce production of the dispersal morph of the pea aphid, Acyrthosiphon pisum. Oikos 98:323–333CrossRefGoogle Scholar
  38. Snoeijs T, Van de Casteele T, Adriaensen F, Matthysen E, Eens M (2004) A strong association between immune responsiveness and natal dispersal in a songbird. Proc R Soc Lond B 271:S199–S201CrossRefGoogle Scholar
  39. Sorci G, Massot M, Clobert J (1994) Maternal parasite load increases sprint speed and philopatry in female offspring of the common lizard. Am Nat 144:153–164CrossRefGoogle Scholar
  40. Stettmer C (1996) Colonisation and dispersal patterns of banded (Calopteryx splendens) and beautiful demoiselles (C. virgo) (Odonata: Calopterygidae) in south-east German streams. Eur J Entomol 93:579–593Google Scholar
  41. Suhonen J, Rantala MJ, Honkavaara J (2008) Territoriality in odonates. In: Córdoba-Aguilar A (ed) Dragonflies and damselflies: model organisms for ecological and evolutionary research. Oxford University Press, Oxford, pp 203–217Google Scholar
  42. Svensson EI, Eroukhmanoff F, Friberg M (2006) Effects of natural and sexual selection on adaptive population divergence and premating isolation in a damselfly. Evolution 60:1242–1253PubMedGoogle Scholar
  43. Taylor PD, Merriam G (1995) Wing morphology of a forest damselfly is related to landscape structure. Oikos 73:43–48CrossRefGoogle Scholar
  44. Taylor PD, Merriam G (1996) Habitat fragmentation and parasitism of a forest damselfly. Landsc Ecol 11:181–189CrossRefGoogle Scholar
  45. Tynkkynen K, Kotiaho JS, Luojumäki M, Suhonen J (2006) Interspecific territoriality in Calopteryx damselflies: the role of secondary sexual characters. Anim Behav 71:299–306CrossRefGoogle Scholar
  46. Van Vuren D (1996) Ectoparasites, fitness and social behaviour of yellow-bellied marmots. Ethology 102:686–694CrossRefGoogle Scholar
  47. Weisser WW, Braendle C, Minoretti N (1999) Predator-induced morphological shift in the pea aphid. Proc R Soc Lond B 266:1175–1181CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Jukka Suhonen
    • 1
  • Johanna Honkavaara
    • 1
  • Markus J. Rantala
    • 1
  1. 1.Section of Ecology, Department of BiologyUniversity of TurkuTurkuFinland

Personalised recommendations