Oecologia

, Volume 161, Issue 4, pp 849–855 | Cite as

Aromatic plants in nests of the blue tit Cyanistes caeruleus protect chicks from bacteria

  • Adèle Mennerat
  • Pascal Mirleau
  • Jacques Blondel
  • Philippe Perret
  • Marcel M. Lambrechts
  • Philipp Heeb
Terrestrial Vertebrate Ecology - Original Paper

Abstract

Several bird species add fresh fragments of plants which are rich in volatile secondary compounds to their nests. It has been suggested, although never tested, that birds use fresh plants to limit the growth of nest microorganisms. On Corsica, blue tits (Cyanistes caeruleus) incorporate fresh fragments of aromatic plants into their nests. These plants do not reduce infestation by nest ectoparasites, but have been shown to improve growth and condition of chicks at fledging. To understand the mechanisms underlying such benefits, we experimentally tested the effects of these plants on the bacteria living on blue tits. Aromatic plants significantly affected the structure of bacterial communities, in particular reducing bacterial richness on nestlings. In addition, in this population where there is a strong association between bacterial density and infestation by blood-sucking Protocalliphora blow fly larvae, these plants reduced bacterial density on the most infested chicks. Aromatic plants had no significant effect on the bacteria living on adult blue tits. This study provides the first evidence that fresh plants brought to the nests by adult birds limit bacterial richness and density on their chicks.

Keywords

Nest greenery Aromatic plants Bacterial communities Cyanistes caeruleus Protocalliphora sp. 

References

  1. Banbura J, Perret P, Blondel J, Thomas DW, Cartan-Son M, Lambrechts MM (2004) Effects of Protocalliphora parasites on nestling food composition in Corsican blue tits Parus caeruleus: consequences for nestling performance. Acta Ornithol 39:21–31Google Scholar
  2. Bennett GF, Whitworth TL (1991) Studies on the life-history of some species of Protocalliphora (Diptera, Calliphoridae). Can J Zool 69:2048–2058CrossRefGoogle Scholar
  3. Bisson I-A, Marra PP, Burtt EH, Sikaroodi M, Gillevet PM (2007) A molecular comparison of plumage and soil bacteria across biogeographic, ecological, and taxonomic scales. Microb Ecol 54:65–81CrossRefPubMedGoogle Scholar
  4. Blondel J (1985) Breeding strategies of the blue tit and coal tit (Parus) in mainland and island Mediterranean habitats—a comparison. J Anim Ecol 54:531–556CrossRefGoogle Scholar
  5. Blondel J, Maistre M, Perret P, Hurtrez-Boussès S, Lambrechts MM (1998) Is the small clutch size of a Corsican blue tit population optimal? Oecologia 117:80–89CrossRefGoogle Scholar
  6. Blondel J, Thomas DW, Charmantier A, Perret P, Bourgault P, Lambrechts MM (2006) A thirty-year study of phenotypic and genetic variation of blue tits in Mediterranean habitat mosaics. Bioscience 56:661–673CrossRefGoogle Scholar
  7. Brouwer L, Komdeur J (2004) Green nesting material has a function in mate attraction in the European starling. Anim Behav 53:9–548Google Scholar
  8. Chapuisat M, Oppliger A, Magliano P, Christe P (2007) Wood ants use resin to protect themselves against pathogens. Proc R Soc B Biol Sci 274:2013–2017CrossRefGoogle Scholar
  9. Charmantier A, Kruuk LEB, Lambrechts MM (2004) Parasitism reduces the potential for evolution in a wild bird population. Evolution 58:203–206PubMedGoogle Scholar
  10. Clark L, Mason JR (1985) Use of nest material as insecticidal and anti-pathogenic agents by the European starling. Oecologia 67:169–176CrossRefGoogle Scholar
  11. Clark L, Mason JR (1988) Effect of biologically active plants used as nest material and the derived benefit to starling nestlings. Oecologia 77:174–180CrossRefGoogle Scholar
  12. Clarke KR, Gorley RN (2006) Primer v6: user manual/tutorial. Primer-E, PlymouthGoogle Scholar
  13. Dawson RD, Hillen KK, Whtiworth TL (2005) Effets of experimental variation in temperature on larval densities of parasitic Protocalliphora (Diptera: Calliphoridae) in nests of tree swallows (Passeriformes: Hirundinidae). Physiol Ecol 34:563–568Google Scholar
  14. Fauth PT, Krementz DG, Hines JE (1991) Ectoparasitsm and the role of green nesting material in the European starling. Oecologia 88:22–29CrossRefGoogle Scholar
  15. Gwinner H (1997) The function of green plants in nests of European starlings (Sturnus vulgaris). Behaviour 134:337–351CrossRefGoogle Scholar
  16. Gwinner H, Berger S (2005) European starlings: nestling condition, parasites and green nest material during the breeding season. J Ornithol 146:365–371CrossRefGoogle Scholar
  17. Gwinner H, Oltrogge M, Trost L, Neienaber U (2000) Green plants in starling nests: effects on nestlings. Anim Behav 30:1–309Google Scholar
  18. Heeb P, Kolliker M, Richner H (2000) Bird-ectoparasite interactions, nest humidity and ectoparasite community structure. Ecology 81:958–968Google Scholar
  19. Hemmes RB, Alvarado A, Hart BL (2002) Use of California bay foliage by wood rats for possible fumigation of nest-borne ectoparasites. Behav Ecol 13:381–385CrossRefGoogle Scholar
  20. Huffman MA (2001) Self-medicative behavior in the African great apes: an evolutionary perspective into the origins of human traditional medicine. Bioscience 51:651–661CrossRefGoogle Scholar
  21. Hurtrez-Boussès S (1996) Interactions hôte-parasite: le système mésange bleue—Protocalliphora en région méditerrannéenne. PhD thesis, Université de Montpellier 2, MontpellierGoogle Scholar
  22. Hurtrez-Boussès S, Perret P, Renaud F, Blondel J (1997) High blowfly parasitic loads affect breeding success in a Mediterranean population of blue tits. Oecologia 112:514–517CrossRefGoogle Scholar
  23. Hurtrez-Boussès S, Renaud F, Blondel J, Galan MJ (2000) Effects of ectoparasites of young on parents’ behaviour in a Mediterranean population of blue tits. J Avian Biol 31:266–269CrossRefGoogle Scholar
  24. Lambrechts MM, Dos Santos A (2000) Aromatic herbs in Corsican blue tit nests: the “potpourri” hypothesis. Acta Oecol 21:175–178CrossRefGoogle Scholar
  25. Legendre P, Legendre L (1998) Numerical ecology. Elsevier, AmsterdamGoogle Scholar
  26. Mennerat A, Perret P, Caro SP, Heeb P, Lambrechts MM (2008) Aromatic plants in blue tit Cyanistes caeruleus nests: no negative effect on blood-sucking Protocalliphora blow fly larvae. J Avian Biol 39:127–132CrossRefGoogle Scholar
  27. Mennerat A, Perret P, Bourgault P, Blondel J, Gimenez O, Thomas DW, Heeb P, Lambrechts MM (2009a) Aromatic plants in nests of blue tits: positive effects on nestlings. Anim Behav 77:569–574CrossRefGoogle Scholar
  28. Mennerat A, Perret P, Lambrechts MM (2009b) Local individual preferences for nest materials in a passerine bird. PLoS One 4(4):e504CrossRefGoogle Scholar
  29. Petit C, Hossaert-Mckey M, Perret P, Blondel J, Lambrechts MM (2002) Blue tits use selected plants and olfaction to maintain an aromatic environment for nestlings. Ecol Lett 5:585–589CrossRefGoogle Scholar
  30. Ranjard L, Poly F, Lata J-C, Mougel C, Thioulouse J, Nazaret S (2001) Characterization of bacterial and fungal soil communities by automated ribosomal intergenic spacer analysis fingerprints: biological and methodological variability. Appl Environ Microbiol 67:4479–4487CrossRefPubMedGoogle Scholar
  31. Rodgers JA, Wenner AS, Schwikert ST (1988) The use and function of green nest material by wood storks. Wilson Bull 100:411–423Google Scholar
  32. Rossi PG, Berti L, Panighi J, Luciani A, Maury J, Muselli A, Serra DD, et al. (2007) Antibacterial action of essential oils from Corsica. J Essent Oil Res 19:176–182Google Scholar
  33. Sherman PW, Hash GA (2001) Why vegetable recipes are not very spicy. Evol Hum Behav 22:147–163CrossRefPubMedGoogle Scholar
  34. Shutler D, Campbell AA (2007) Experimental addition of greenery reduces flea loads in nests of a non-greenery using species, the tree swallow Tachycineta bicolor. J Avian Biol 38:7–12CrossRefGoogle Scholar
  35. Simon A, Thomas D, Blondel J, Perret P, Lambrechts MM (2004) Physiological ecology of Mediterranean blue tits (Parus caeruleus L.): effects of ectoparasites (Protocalliphora spp.) and food abundance on metabolic capacity of nestlings. Physiol Biochem Zool 77:492–501CrossRefPubMedGoogle Scholar
  36. Simon A, Thomas DW, Speakman JR, Blondel J, Perrer P, Lambrechts MM (2005) Impact of ectoparasitic blowfly larvae (Protocalliphora spp.) on the behavior and energetics of nestling blue tits. J Field Ornithol 76:402–410Google Scholar
  37. Soler JJ, de Neve L, Perez-Contreras T, Soler M, Sorci G (2003) Trade-off between immunocompetence and growth in magpies: an experimental study. Proc R Soc Lond B 270:241–248CrossRefGoogle Scholar
  38. Staley JT, Gunsalus RP, Lory S, Perry JJ (2007) Microbial life, 2nd edn. Sinauer, SunderlandGoogle Scholar
  39. Tschirren B, Richner H (2006) Parasites shape the optimal investment in immunity. Proc R Soc B Biol Sci 273:1773–1777CrossRefGoogle Scholar
  40. Wimberger PH (1984) The use of green plant material in bird nests to avoid ectoparasites. Auk 101:615–618Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Adèle Mennerat
    • 1
    • 4
  • Pascal Mirleau
    • 2
    • 3
    • 5
  • Jacques Blondel
    • 1
  • Philippe Perret
    • 1
  • Marcel M. Lambrechts
    • 1
  • Philipp Heeb
    • 2
    • 3
  1. 1.Centre d’Ecologie Fonctionnelle et EvolutiveCNRS, UMR 5175Montpellier Cedex 5France
  2. 2.EDB (Laboratoire Évolution et Diversité Biologique)Université de Toulouse UPS, UMR 5174ToulouseFrance
  3. 3.EDB (Laboratoire Évolution et Diversité Biologique)CNRSToulouseFrance
  4. 4.Department of BiologyUniversity of BergenBergenNorway
  5. 5.Institut Méditerranéen d’Ecologie et de PaléoécologieUMR CNRS 6116, UMR IRD 193, Université Paul Cezanne Aix-Marseille IIIMarseille Cedex 20France

Personalised recommendations