Skip to main content
Log in

The anomalous Kentucky coffeetree: megafaunal fruit sinking to extinction?

  • Concepts, Reviews and Syntheses
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

The Kentucky coffeetree (Gymnocladus dioicus, Fabaceae) is an ecological paradox. A rare tree in nature in eastern and central North America, G. dioicus produces legumes that are only known to be dispersed by water, but appear similar to fruits consumed and dispersed by elephants and rhinoceros. One would expect the pods to be consumed by livestock, but the pulp and seeds are toxic to cattle and sheep. We examine the puzzle of G. dioicus dispersal in light of its other reproductive and life history characteristics and find that it probably is a botanical anachronism, in terms of both a set of dispersal agents long extinct and habitats, including what we term megafaunal disclimaxes, which have disappeared. Large seeds, the megafaunal gestault of the fruit, a dioecious mating system, and shade-intolerance combined with vigorous cloning suggest a widely dispersed pioneer of Miocene through Pleistocene habitats profoundly altered by large-mammal herbivory. As to what ate it, we can only say there were once many candidates. We hypothesize that the plant is an ecological anachronism, sinking to extinction in the wild.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alexandre DY (1978) Le rôle disseminateur des éléphants en forét de tai, Côte d’Ivoire. Terre Vie 32:47–71

    Google Scholar 

  • Alroy J (1999) The fossil record of North American mammals: evidence for a Paleocene evolutionary radiation. Syst Biol 48:107–118

    Article  PubMed  CAS  Google Scholar 

  • Barlow C (2000) The ghosts of evolution: nonsensical fruit, missing partners, and other ecological anachronisms. Basic Books, New York

    Google Scholar 

  • Barnes BV, Wagner WG, Otis CH (1981) Michigan trees: a guide to the trees of Michigan and the Great Lakes region. The University of Michigan Press, Michigan

    Google Scholar 

  • Baskin CC, Baskin JM (1998) Seeds: ecology, biogeography, and evolution of dormancy and germination. Academic Press, San Diego

    Google Scholar 

  • Beal WJ (1898) Some unique examples of dispersion of seeds and fruits. Am Midl Nat 32:859–866

    Google Scholar 

  • Burrows GE, Tyrl RJ (2001) Toxic plants of North America. Iowa State University Press, Ames

    Google Scholar 

  • Cipolinni ML, Levey DJ (1997) Secondary metabolites of fleshy vertebrate-dispersed fruits: adaptive hypotheses and implications for seed dispersal. Am Nat 150:346–372

    Article  Google Scholar 

  • Cochrane EP (2003) The need to be eaten: Balanites wilsoniana with and without elephant seed-dispersal. J Trop Ecol 19:579–589

    Article  Google Scholar 

  • Cordeiro NJ, Patrick DAG, Munisi B, Gupta V (2004) Role of dispersal in the invasion of an exotic tree in East African submontane forest. J Trop Ecol 20:449–457

    Article  Google Scholar 

  • Curtis JT (1959) The vegetation of Wisconsin: an ordination of plant communities. The University of Wisconsin Press, Madison

    Google Scholar 

  • Davis MB (1986) Climatic instability, time lags, and community disequilibrium. In: Diamond J, Case TJ (eds) Community Ecology. Harper and Row, New York, pp 269–284

    Google Scholar 

  • Deam DC (1921) Trees of Indiana. Fort Wayne Printing, Fort Wayne

    Google Scholar 

  • Dinerstein E, Wemmer CM (1988) Fruits rhinoceros eat: dispersal of Trewia nudiflora (Euphorbiaceae) in lowland Nepal. Ecology 69:1768–1774

    Article  Google Scholar 

  • Dudley JP (2000) Seed dispersal by elephants in semiarid woodland habitats of Hwange National Park, Zimbabwe. Biotropica 32:556–561

    Google Scholar 

  • Evans CS, Bell EA (1978) ‘Uncommon’ amino acids in the seeds of 64 species of Caesalpinieae. Phytochemistry 17:1127–1129

    Article  CAS  Google Scholar 

  • Evers RA, Link RP (1972) Poisonous plants of the Midwest. University of Illinois Press, Urbana

    Google Scholar 

  • Farlow JO (1987) Speculations about the diet and digestive physiology of herbivorous dinosaurs. Paleobiology 13:60–72

    Google Scholar 

  • Fritz H, Duncan P, Gordon IJ, Illius AW (2002) Megaherbivores influence trophic guilds structures in African ungulate communites. Oecologia 131:620–625

    Article  Google Scholar 

  • Gautier-Hion A, Emmons LH, Dubost G (1980) A comparison of the diets of three major groups of primary consumers of Gabon (primates, squirrels and ruminants). Oecologia 45:182–189

    Article  Google Scholar 

  • Gautier-Hion A, Duplantier JM, Quris R, Feer F, Sourd C, Decoux JP, Dubost G, Emmons LH, Erard C, Hecketsweiler P, Moungazi A, Roussilhon C, Thiollay JM (1985) Fruit characters as a basis of fruit choice and seed dispersal in a tropical forest vertebrate community. Oecologia 65:324–337

    Article  Google Scholar 

  • Graham RW, Lundelius EL Jr, Graham MA, Schroeder EK, Toomey RSIII, Anderson E, Barnosky AD, Burns JA, Churcher CS, Grayson DK, Guthrie RD, Harington CR, Jefferson GT, Martin LD, McDonald HG, Morlan RE, Semken HA Jr, Webb SD, Werdelin L, Wilson MC (1996) Spatial response of mammals to late quaternary environmental fluctuations. Science 272:1601–1606

    Article  PubMed  CAS  Google Scholar 

  • Grime JP (1979) Plant strategies and vegetation processes. Wiley, New York

    Google Scholar 

  • Guimaraes PR Jr, Galetti M, Jordano P (2008) Seed dispersal anachronisms: rethinking the fruits extinct megafauna ate. PLoS ONE 3(3):e1745

    Article  PubMed  Google Scholar 

  • Guthrie RD (1984) Mosaics, allelochemicals and nutrients: an ecological theory of late pleistocene megafaunal extinctions. In: Martin PS, Klein RG (eds) Quaternary extinctions: a prehistoric revolution. University of Arizona Press, Tucson, pp 259–298

    Google Scholar 

  • Hansen RM (1978) Shasta ground sloth food habits, Rampart Cave, Arizona. Paleobiology 4:302–319

    Google Scholar 

  • Heilmann LC, de Jong K, Lent PC, de Boer WF (2006) Will tree euphorbias (Euphorbia tetragona and Euphorbia triangularis) survive under the impact of black rhinoceros (Biconris diceros minor) browsing in the Great Fish River Reserve, South Africa? Afr J Ecol 44:87–94

    Article  Google Scholar 

  • Herrera CM (1985) Determinants of plant-animal coevolution: the case of mutualistic seed-dispersal systems. Oikos 44:132–141

    Article  Google Scholar 

  • Herrera CM (2002) Seed dispersal by vertebrates. In: Herrera CM, Pellmyr O (eds) Plant–animal interactions: an evolutionary approach. Blackwell, Malden, pp 185–208

    Google Scholar 

  • Hofreiter M, Poinar HN, Spaulding WG, Bauer K, Martin PS, Possnert G, Paabo S (2000) A molecular analysis of ground sloth diet through the last glaciation. Mol Ecol 9:1975–1984

    Article  PubMed  CAS  Google Scholar 

  • Howe HF (1984) Constraints on the evolution of mutualisms. Am Nat 123:764–777

    Article  Google Scholar 

  • Howe HF (1985) Gomphothere fruits: a critique. Am Nat 125:853–865

    Article  Google Scholar 

  • Howe HF (1989) Scatter- and clump-dispersal and seedling demography: hypothesis and implications. Oecologia 79:417–426

    Article  Google Scholar 

  • Howe HF, Smallwood J (1982) Ecology of seed dispersal. Annu Rev Ecol Syst 13:201–228

    Article  Google Scholar 

  • Hughes L, Dunlop M, French K, Leishman MR, Rice B, Rodgerson L, Westoby M (1994) Predicting dispersal spectra: a minimal set of hypotheses based on plant attributes. J Ecol 82:933–950

    Article  Google Scholar 

  • Huxley AJ, Griffiths M (1992) The New Royal Horticultural Society dictionary of gardening. Stockton Press, New York

    Google Scholar 

  • Jackson ST, Webb RS, Anderson KH, Overpeck JT, Webb TIII, Williams JW, Hansen BCS (2000) Vegetation and environment in eastern North America during the last glacial maximum. Quatern Sci Rev 19:489–508

    Article  Google Scholar 

  • Janis CM (1993) Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events. Annu Rev Ecol Syst 24:467–500

    Article  Google Scholar 

  • Janis CM, Damuth J, Theodor JM (2004) The species richness of Miocene browsers, and implications for habitat type and primary productivity in the North American grassland biome. Palaeogeogr Palaeoclimatol Palaeoecol 207:371–398

    Article  Google Scholar 

  • Janzen DH (1976) Effect of defoliation on fruit-bearing branches of the Kentucky coffee tree, Gymnocladus dioica (Leguminosae). Am Midl Nat 95:474–478

    Article  Google Scholar 

  • Janzen DH (1980) When is it coevolution? Evolution 34:611–612

    Article  Google Scholar 

  • Janzen DH, Martin P (1982) Neotropical anachronisms: what the gomphotheres ate. Science 215:19–27

    Article  PubMed  Google Scholar 

  • Jordano P (1995) Angiosperm fleshy fruits and seed dispersers: a comparative analysis of adaptation and constraints in plant–animal interactions. Am Nat 145:163–191

    Article  Google Scholar 

  • Kinghorn AD (1979) Cocarcinogenic irritant Euphorbiaceae. In: Kinghorn AD (ed) Toxic Plants. Columbia University Press, New York, pp 137–160

    Google Scholar 

  • Kingsbury JM (1964) Poisonous plants of the United States and Canada. Prentice-Hall, New Jersey

    Google Scholar 

  • Konoshima T, Yasuda I, Kashiwada Y, Cosentino LM, Lee KH (1995) Anti-AIDS agents, 21. Triterpenoid saponins as anti-HIV principles from fruits of Gleditsia japonica and Gymnocladus chinensis, and a structure-activity correlation. J Nat Prod 58:1372–1377

    Article  PubMed  CAS  Google Scholar 

  • Kurtén B, Anderson E (1980) Pleistocene mammals of North America. Columbia University Press, New York

    Google Scholar 

  • Lindsey AA, Petty RO, Sterling DK, VanAsdall W (1961) Vegetation and environment along the Wabash and Tippecanoe Rivers. Ecol Monogr 31:105–156

    Article  Google Scholar 

  • Lindsey AA, Crankshaw WB, Qadir SA (1965) Soil relations and distributional map of presettlement Indiana. Bot Gaz 126:155–163

    Article  Google Scholar 

  • McClain ML, Jackson MT (1980) Vegetational associates and site characteristics of Kentucky coffeetree, Gymnocladus dioicus (L.) K. Koch Proc Central Hardwoods For Conf 3: 239–256

  • Murray DR (ed) (1986) Seed dispersal. Academic Press, Sydney

    Google Scholar 

  • Oh CH, Mabry TJ, Kim KR, Kim JH (1995) GC–MS analysis of nonprotein amino acids in Gymnocladus dioica as N (O, S)-isobutyloxycarbonyl silyl derivatives. J Chromatogr Sci 33:399–404

    PubMed  CAS  Google Scholar 

  • Overpeck JT, Webb RS, Webb TIII (1992) Mapping eastern North American vegetation change over the past 18 ka: no-analogs in the future. Geology 20:1071–1074

    Article  Google Scholar 

  • Owen-Smith N (1987) Pleistocene extinctions: the pivotal role of megaherbivores. Paleobiology 13:351–362

    Google Scholar 

  • Pan M, Bonness MS, Mabry TJ (1995) Non-protein amino acids from Gymnocladus dioica. Biochem Syst Ecol 23:575–576

    Article  CAS  Google Scholar 

  • Pirone PP (1978) Diseases and pests of ornamental plants, 5th edn. John Wiley and Sons, New York

    Google Scholar 

  • Rosenthal GA (1991) Nonprotein amino acids as protective allelochemicals. In: Rosenthal GA, Berenbaum MR (eds) Herbivores: their interactions with secondary plant metabolites. The chemical participants, vol 1, 2nd edn. Academic Press, New York, pp 1–34

    Google Scholar 

  • Sheil D, Salim A (2004) Forest tree persistence, elephants, and stem scars. Biotropica 36:505–521

    Google Scholar 

  • Southon IW, Bisby F, Buckingham J, Harborne JB, Zarucchi JL (1994) Phytochemical dictionary of the Leguminosae, vol 1. Chapman & Hall, New York

    Google Scholar 

  • Tehon LR, Morrill CC, Graham R (1946) Illinois plants poisonous to livestock. University of Illinois Press, Urbana

    Google Scholar 

  • Tiffney BH (2004) Vertebrate dispersal of seed plants through time. Annu Rev Ecol Syst 35:1–29

    Article  Google Scholar 

  • Tiffney BH, Manchester SR (2001) The use of geological and paleontological evidence in evaluating plant phylogeographic hypotheses in the Northern hemisphere tertiary. Int J Plant Sci 162:S3–S17

    Article  Google Scholar 

  • van der Pijl L (1982) Principles of dispersal in higher plants, 3rd edn. Springer, Berlin

    Google Scholar 

  • Van Soest PJ (1994) Nutritional ecology of the ruminant, 2nd edn. Cornell University Press, Ithaca

    Google Scholar 

  • Webb SD (1983) The rise and fall of the Late Miocene ungulate fauna in North America. In: Nitecki MH (ed) Coevolution. University of Chicago Press, Chicago, pp 267–306

    Google Scholar 

  • Werthner WB, Werthner EH, Kienholz AR (1935) Some American trees: an intimate study of native Ohio trees. Macmillian, New York

    Google Scholar 

  • Wing SL, Tiffney BH (1987) The reciprocal interaction of angiosperm evolution and tetrapod herbivory. Rev Palaeobot Palynol 50:179–210

    Article  Google Scholar 

Download references

Acknowledgments

We thank Usama Ahmad, Luca Borghesio, Crystal Guzman, Maria Luisa Jorge, William Lu, Jennifer Ison, Andrea Kramer, Gabriela Nunez-Iturri, Manette Sandor, Carrie Seltzer, John Silander, Amy Sullivan, Bruce Tiffney, Mariana Valencia, Jenny Zambrano, and anonymous reviewers for comments on the manuscript. We gratefully acknowledge support from the Archbold Biological Station, the University of Illinois at Chicago, and the National Science Foundation (DEB 0129081, 0516259). Procedures conformed to federal, state and local laws and permit regulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David N. Zaya.

Additional information

Communicated by John Silander.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaya, D.N., Howe, H.F. The anomalous Kentucky coffeetree: megafaunal fruit sinking to extinction?. Oecologia 161, 221–226 (2009). https://doi.org/10.1007/s00442-009-1372-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-009-1372-3

Keywords

Navigation