Skip to main content
Log in

Modelling the drought impact on monoterpene fluxes from an evergreen Mediterranean forest canopy

  • Physiological Ecology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

In many ecosystems drought cycles are common during the growing season but their impact on volatile monoterpene emissions is unclear. Therefore, we aimed to develop and evaluate a process-based modelling approach to explore the explanatory power of likely mechanisms. The biochemically based isoprene and monoterpene emission model SIM-BIM2 has been modified and linked to a canopy model and a soil water balance model. Simulations are carried out for Quercus ilex forest sites and results are compared to measured soil water, photosynthesis, terpene-synthase activity, and monoterpene emission rates. Finally, the coupled model system is used to estimate the annual drought impact on photosynthesis and emission. The combined and adjusted vegetation model was able to simulate photosynthesis and monoterpene emission under dry and irrigated conditions with an R 2 of 0.74 and 0.52, respectively. We estimated an annual reduction of monoterpene emission of 67% for the extended and severe drought period in 2006 in the investigated Mediterranean ecosystem. It is concluded that process-based ecosystem models can provide a useful tool to investigate the involved mechanisms and to quantify the importance of specific environmental constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baker B, Bai JH, Johnson C, Cai ZT, Li QJ, Wang YF, Guenther A, Greenberg J, Klinger L, Geron C, Rasmussen R (2005) Wet and dry season ecosystem level fluxes of isoprene and monoterpenes from a Southeast Asian secondary forest and rubber tree plantation. Atmos Environ 39:381–390

    Article  CAS  Google Scholar 

  • Baldocchi D, Guenther A, Harley P, Klinger L, Zimmerman P, Lamb B, Westberg H (1995) The fluxes and air chemistry of isoprene above a deciduous hardwood forest. Phil Trans R Soc Lond A 351:279–296

    Article  CAS  Google Scholar 

  • Baldocchi DD, Fuentes JD, Bowling DR, Turnipseed AA, Monson RK (1999) Scaling isoprene fluxes from leaves to canopies: test cases over a boreal aspen and a mixed species temperate forest. J Appl Meteorol 38:885–898

    Article  Google Scholar 

  • Baldocchi DD, Wilson KB, Gu L (2002) How the environment, canopy structure and canopy physiological functioning influence carbon, water and energy fluxes of a temperate broad-leaved deciduous forest—an assessment with the biophysical model CANOAK. Tree Physiol 22:1065–1077

    PubMed  CAS  Google Scholar 

  • Ball JT, Woodrow IE, Berry JA (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggins J (ed) Progress in photosynthesis research. Nijhoff, Dordrecht, pp 221–224

    Google Scholar 

  • Beniston M, Stephenson DB, Christensen OB, Ferro CAT, Frei C, Goyette S, Halsnaes K, Holt T, Jylhä K, Koffi B, Palutikof J, Schöll R, Semmler T, Woth K (2007) Future extreme events in European climate: an exploration of regional climate model projections. Clim Change 81:71–95

    Article  Google Scholar 

  • Bertin N, Staudt M (1996) Effect of water stress on monoterpene emissions from young potted holm oak (Quercus ilex L.) trees. Oecologia 107:456–462

    Article  Google Scholar 

  • Blanch JS, Peñuelas J, Llusia J (2007) Sensitivity of terpene emissions to drought and fertilization in terpene-storing Pinus halepensis and non-storing Quercus ilex. Physiol Plant 131:211–225

    PubMed  CAS  Google Scholar 

  • Brilli F, Barta C, Fortunati A, Lerdau M, Loreto F, Centritto M (2007) Response of isoprene emission and carbon metabolism to drought in white poplar (Populus alba) saplings. New Phytol 175:244–254

    Article  PubMed  CAS  Google Scholar 

  • Brüggemann N, Schnitzler J-P (2002) Comparison of isoprene emission, intercellular isoprene concentration and photosynthetic performance in water-limited oak (Quercus pubescens Willd. and Quercus robur L.) saplings. Plant Biol 4:456–463

    Article  Google Scholar 

  • Clark DB, Olivas PC, Oberbauer SF, Clark DA, Ryan MG (2008) First direct landscape-scale measurement of tropical rain forest leaf area index, a key driver of global primary productivity. Ecol Lett 11:163–172

    PubMed  Google Scholar 

  • Er-Raki S, Chehbouni A, Guemouria N, Duchemin B, Ezzahar J, Hadria R (2007) Combining FAO-56 model and ground-based remote sensing to estimate water consumptions of wheat crops in a semi-arid region. Agric Water Manage 87:41–54

    Article  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  CAS  Google Scholar 

  • Filella I, Peñuelas J (2006) Daily, weekly and seasonal relationships among VOCs, NOx and O3 in a semi-urban area near Barcelona. J Atmos Chem V54:189–201

    Article  CAS  Google Scholar 

  • Fischbach RJ, Zimmer I, Steinbrecher R, Pfichner A, Schnitzler J-P (2000) Monoterpene synthase activities in leaves of Picea abies (L.) Karst. and Quercus ilex L. Phytochemistry 54:257–265

    Article  PubMed  CAS  Google Scholar 

  • Funk JL, Jones CG, Gray DW, Throop HL, Hyatt LA, Lerdau MT (2005) Variation in isoprene emission from Quercus rubra: Sources, causes, and consequences for estimating fluxes. J Geophys Res 110:doi:10.1029/2004JD005229

  • Geron CD, Nie D, Arnts RR, Sharkey TD, Singsaas EL, Vanderveer PJ, Guenther A, Sickles JEII, Kleindienst TE (1997) Biogenic isoprene emission: model evaluation in a southeastern United States bottomland deciduous forest. J Geophys Res 102:18903–18916

    Article  Google Scholar 

  • Geron C, Guenther A, Greenberg J, Loescher HW, Clark D, Baker B (2002) Biogenic volatile organic compound emissions from a lowland tropical wet forest in Costa Rica. Atmos Environ 36:3793–3802

    Article  CAS  Google Scholar 

  • Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33:L08707. doi:10.1029/2006GL025734

    Article  Google Scholar 

  • Giorgi F, Bi X, Pal J (2004) Mean interannual variability and trends in a regional climate change experiment over Europe. II. Climate change scenarios (2071–2100). Clim Dyn 23:839–858

    Article  Google Scholar 

  • Grote R (2003) Estimation of crown radii and crown projection area from stem size and tree position. Ann For Sci 60:393–402

    Article  Google Scholar 

  • Grote R (2007) Sensitivity of volatile monoterpene emission to changes in canopy structure—a model based exercise with a process-based emission model. New Phytol 173:550–561

    Article  PubMed  CAS  Google Scholar 

  • Grote R, Niinemets Ü (2008) Modeling volatile isoprenoid emissions—a story with split ends. Plant Biol 10:8–28

    PubMed  CAS  Google Scholar 

  • Grote R, Mayrhofer S, Fischbach RJ, Steinbrecher R, Staudt M, Schnitzler J-P (2006) Process-based modelling of isoprenoid emissions from evergreen leaves of Quercus ilex (L.). Atmos Environ 40:152–165

    Article  CAS  Google Scholar 

  • Guenther A, Zimmerman P, Harley P, Monson R, Fall R (1993) Isoprene and monoterpene emission rate variability: model evaluations and sensitivity analysis. J Geophys Res 98:12609–12617

    Article  Google Scholar 

  • Guenther A, Hewitt CN, Erickson D, Fall R, Geron C, Graedel T, Harley P, Klinger L, Lerdau M, McKay WA, Pierce T, Scholes B, Steinbrecher R, Tallamraju R, Taylor J, Zimmerman P (1995) A global model of natural volatile organic compound emissions. J Geophys Res 100:8873–8892

    Article  CAS  Google Scholar 

  • Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer PI, Geron C (2006) Estimates of global terrestrial isoprene emissions using MEGAN (mdel of emissions of gases and aerosols from nature). Atmos Chem Phys 6:3181–3210

    Article  CAS  Google Scholar 

  • Hoff C, Rambal S (2003) An examination of the interaction between climate, soil and leaf area index in a Quercus ilex ecosystem. Ann For Sci 60:153–161

    Article  Google Scholar 

  • Infante JM, Damesin C, Rambal S, Fernandez-Ales R (1999) Modelling leaf gas exchange in holm-oak trees in southern Spain. Agric For Meteorol 95:203–223

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: climate change impacts, adaptation and vulnerability. Cambridge University Press, Cambridge

    Google Scholar 

  • Keenan T, Garcia R, Sabate S, Gracia CA (2007) Process-based forest modelling: a thorough validation and future prospects for Mediterranean forests in a changing world. Cuad Soc Esp Cienc For 23:81–92

    Google Scholar 

  • Kreuzwieser J, Graus M, Wisthaler A, Hansel A, Rennenberg H, Schnitzler J-P (2002) Xylem-transported glucose as an additional carbon source for leaf isoprene formation in Quercus robur. New Phytol 156:171–178

    Article  CAS  Google Scholar 

  • Kuhn U, Rottenberger S, Biesenthal T, Wolf A, Schebeske G, Ciccioli P, Brancaleoni E, Frattoni M, Tavares TM, Kesselmeier J (2004) Seasonal differences in isoprene and light-dependent monoterpene emission by Amazonian tree species. Glob Change Biol 10:663–682

    Article  Google Scholar 

  • Lehning A, Zimmer W, Zimmer I, Schnitzler J-P (2001) Modeling of annual variations of oak (Quercus robur L.) isoprene synthase activity to predict isoprene emission rates. J Geophys Res 106:3157–3166

    Article  CAS  Google Scholar 

  • Lenz R, Selige T, Seufert G (1997) Scaling up the biogenic emissions from test sites at Castelporziano. Atmos Environ 31:239–250

    Article  CAS  Google Scholar 

  • Lerdau M, Keller M (1997) Controls on isoprene emission from trees in a subtropical dry forest. Plant Cell Environ 20:569–578

    Article  CAS  Google Scholar 

  • Loreto F, Sharkey TD (1993) On the relationship between isoprene emission and photosynthetic metabolites under different environmental conditions. Planta 189:420–424

    Article  CAS  Google Scholar 

  • Loreto F, Fischbach RJ, Schnitzler JP, Ciccioli P, Brancaleoni E, Calfapietra C, Seufert G (2001) Monoterpene emission and monoterpene synthase activities in the Mediterranean evergreen oak Quercus ilex L. grown at elevated CO2 concentrations. Glob Change Biol 7:709–717

    Article  Google Scholar 

  • Martin MJ, Stirling CM, Humphries SW, Long SP (2000) A process-based model to predict the effects of climatic change on leaf isoprene emission rates. Ecol Modell 131:161–174

    Article  CAS  Google Scholar 

  • Murray FW (1967) On the computation of saturation vapor pressure. J Appl Meteorol 6:203–204

    Article  CAS  Google Scholar 

  • Niinemets Ü, Seufert G, Steinbrecher R, Tenhunen JD (2002a) A model coupling foliar monoterpene emissions to leaf photosynthetic characteristics in Mediterranean evergreen Quercus species. New Phytol 153:257–273

    Article  CAS  Google Scholar 

  • Niinemets Ü, Hauff K, Bertin N, Tenhunen JD, Steinbrecher R, Seufert G (2002b) Monoterpene emissions in relation to foliar photosynthetic and structural variables in Mediterranean evergreen Quercus species. New Phytol 153:243–256

    Article  CAS  Google Scholar 

  • Noe SM, Ciccioli P, Brancaleoni E, Loreto F, Niinemets Ü (2006) Emissions of monoterpenes linalool and ocimene respond differently to environmental changes due to differences in physico-chemical characteristics. Atmos Environ 40:4649–4662

    Article  CAS  Google Scholar 

  • Nogues I, Brilli F, Loreto F (2006) Dimethylallyl diphosphate and geranyl diphosphate pools of plant species characterized by different isoprenoid emissions. Plant Physiol 141:721–730

    Article  PubMed  CAS  Google Scholar 

  • Ormeno E, Mevy JP, Vila B, Bousquet-Melou A, Greff S, Bonin G, Fernandez C (2007) Water deficit stress induces different monoterpene and sesquiterpene emission changes in Mediterranean species. Relationship between terpene emissions and plant water potential. Chemosphere 67:276–284

    Article  PubMed  CAS  Google Scholar 

  • Otter LB, Guenther A, Greenberg J (2002) Seasonal and spatial variations in biogenic hydrocarbon emissions from southern African savannas and woodlands. Atmos Environ 36:4265–4275

    Article  CAS  Google Scholar 

  • Pegoraro E, Rey A, Bobich EG, Barron-Gafford GA, Grieve KA, Mahli Y, Murthy R (2004) Effect of elevated CO2 concentration and vapour pressure deficit on isoprene emission from leaves of Populus deltoides during drought. Funct Plant Biol 31:1137–1147

    Article  CAS  Google Scholar 

  • Pegoraro E, Rey A, Abrell L, van Haren J, Lin G (2006) Drought effect on isoprene production and consumption in Biosphere 2 tropical rainforest. Glob Change Biol 12:456–469

    Article  Google Scholar 

  • Plaza J, Nunez L, Pujadas M, Perrez-Pastor R, Bermejo V, Garcia-Alonso S, Elvira S (2005) Field monoterpene emission of Mediterranean oak (Quercus ilex) in the central Iberian Peninsula measured by enclosure and micrometeorological techniques: observation of drought stress effect. J Geophys Res 110: doi:10.1029/2004JD005168

  • Plummer SE (2000) Perspectives on combining ecological process models and remotely sensed data. Ecol Modell 129:169–186

    Article  Google Scholar 

  • Pressley S, Lamb B, Westberg H, Vogel C (2006) Relationships among canopy scale energy fluxes and isoprene flux derived from long-term, seasonal eddy covariance measurements over a hardwood forest. Agric For Meteorol 136:188–202

    Article  Google Scholar 

  • Priestley CHB, Taylor RJ (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. Mon Weather Rev 100:81–92

    Article  Google Scholar 

  • Rambal S (1993) The differential role of mechanisms for drought resistances in a Mediterranean evergreen shrub: a simulation approach. Plant Cell Environ 16:35–44

    Article  Google Scholar 

  • Rambal S, Ourcival J-M, Joffre R, Mouillot F, Nouvellon Y, Reichstein M, Rocheteau A (2003) Drought controls over conductance and assimilation of a Mediterranean evergreen ecosystem: scaling from leaf to canopy. Glob Change Biol 9:1813–1824

    Article  Google Scholar 

  • Rohmer M (1999) The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep 16:565–574

    Article  PubMed  CAS  Google Scholar 

  • Sharkey TD, Loreto F (1993) Water stress, temperature, and light effects on the capacity for isoprene emission and photosynthesis of kudzu leaves. Oecologia 95:328–333

    Article  Google Scholar 

  • Sharkey TD, Wiberley AE, Donohue AR (2008) Isoprene emission from plants: why and how. Ann Bot 101:5–18

    Article  PubMed  CAS  Google Scholar 

  • Spitters CJT, Toussaint HAJM, Goudriaan J (1986) Separating the diffuse and direct component of global radiation and its implications for modeling canopy photosynthesis. Part I. Components of incoming radiation. Agric For Meteorol 38:217–229

    Article  Google Scholar 

  • Staudt M, Rambal S, Joffre R, Kesselmeier J (2002) Impact of drought on seasonal monoterpene emissions from Quercus ilex in southern France. J Geophys Res 107:4602–4608

    Article  CAS  Google Scholar 

  • Terradas J (1999) Holm oak and holm oak forests: an introduction. In: Rodà F, Retana J, Gracia CA, Llebot J (eds) Ecology of Mediterranean evergreen Oak forests. Springer, Berlin, pp 3–14

    Google Scholar 

  • Tingey DT, Evans R, Gumpertz M (1981) Effects of environmental conditions on isoprene emission from live oak. Planta 152:565–570

    Article  CAS  Google Scholar 

  • Vallat A, Gu H, Dorn S (2005) How rainfall, relative humidity and temperature influence volatile emissions from apple trees in situ. Phytochemistry 66:1540–1550

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers for constructive comments and remarks that were valuable in improving a previous version this manuscript. This work was enabled by support received from the European Science Foundation for the project Volatile Organic Compounds in the Biosphere-Atmosphere System. Further support was provided by the German Federal Ministry of Education and Research (BMBF) in the framework of the national joint research project AFO2000 (Atmosphären-Forschungsprogramm 2000). All experiments comply with the current laws of the country in which they were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rüdiger Grote.

Additional information

Communicated by F. Valladares.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grote, R., Lavoir, AV., Rambal, S. et al. Modelling the drought impact on monoterpene fluxes from an evergreen Mediterranean forest canopy. Oecologia 160, 213–223 (2009). https://doi.org/10.1007/s00442-009-1298-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-009-1298-9

Keywords

Navigation