A positive trait-mediated indirect effect involving the natural enemies of competing herbivores

Abstract

Trait-mediated indirect effects can have important effects on food web dynamics but are still poorly understood in the field. In a previous population cage study of a small community of aphids and an aphid natural enemy it was found that a trait-mediated indirect effect involving the natural enemy’s behaviour was key to understanding community persistence. Here evidence is presented that a related phenomenon involving some of the same species occurs in the field. Surveys showed that two species of aphid (Acyrthosiphon pisum and Megourella purpurea) tended to share a host plant with a third generally unpalatable species (Megoura viciae) more often than expected by chance. Further evidence suggested this was not due to differential plant suitability or location, but to a positive effect of M. viciae on the performance of the other two species. To test this, field experiments were set up comparing the size and persistence of A. pisum colonies sharing or not sharing a plant individual with M. viciae colonies. A. pisum colonies tended to be larger and persisted for a longer period of time in the presence of M. viciae, an effect that was significant for small colonies exposed to many predators. When protected from predation the presence of M. viciae had no effect on A. pisum colonies. The positive effects of M. viciae on A. pisum is thus likely to be natural-enemy mediated rather than plant mediated. How predation by Syrphidae, the major group observed in the study, is affected by M. viciae is discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abrams PA (1983) Arguments in favor of higher-order interactions. Am Nat 121:887–891

    Article  Google Scholar 

  2. Abrams PA (1987) On classifying interactions between populations. Oecologia 73:272–281

    Article  Google Scholar 

  3. Abrams PA, Vos M (2003) Adaptation, density dependence and the responses of trophic level abundances to mortality. Evol Ecol Res 5:1113–1132

    Google Scholar 

  4. Almohamad R, Verheggen FJ, Francis F, Haubruge E (2007) Predatory hoverflies select their oviposition site according to aphid host plant and aphid species. Entomol Exp App 125:13–21. doi:10.1111/j.1570-7458.2007.00596.x

    Article  Google Scholar 

  5. Andow DA (1991) Vegetational diversity and arthropod population response. Annu Rev Entomol 36:561–586

    Article  Google Scholar 

  6. Beckerman AP, Uriarte M, Schmitz OJ (1997) Experimental evidence for a behavior-mediated trophic cascade in a terrestrial food chain. Proc Natl Acad USA 94:10735–10738

    Article  CAS  Google Scholar 

  7. Bolker B, Holyoak M, Krivan V, Rowe L, Schmitz O (2003) Connecting theoretical and empirical studies of trait-mediated interactions. Ecology 84:1101–1114

    Article  Google Scholar 

  8. Bonsall MB, Hassell MP (1997) Apparent competition structures ecological assemblages. Nature 388:371–373

    Article  CAS  Google Scholar 

  9. Borer ET, Seabloom EW, Shurin JB, Anderson KE, Blanchette CA, Broitman B, Cooper SD, Halpern BS (2005) What determines the strength of a trophic cascade? Ecology 86:528–537

    Article  Google Scholar 

  10. Chase JM, Abrams PA, Grover JP, Diehl S, Chesson P, Holt RD, Richards SA, Nisbet RM, Case TJ (2002) The interaction between predation and competition: a review and synthesis. Ecol Lett 5:302–315

    Article  Google Scholar 

  11. Crawley MJ (2007) The R book, 1st edn. Wiley, Chichester

    Google Scholar 

  12. Dambacher JM, Li HW, Rossignol PA (2002) Relevance of community structure in assessing indeterminacy of ecological predictions. Ecology 83:1372–1385

    Google Scholar 

  13. Dicke M, van Poecke RMP, de Boer JG (2003) Inducible indirect defence of plants: from mechanisms to ecological functions. Basic Appl Ecol 4:27–42

    Article  CAS  Google Scholar 

  14. Dixon AFG (1958) The escape responses shown by certain aphids to the presence of the coccinellid Adalia decempunctata (L.). Trans R Entomol Soc 110:319–334

    Google Scholar 

  15. Duffy JE (2002) Biodiversity and ecosystem function: the consumer connection. Oikos 99:201–219

    Article  Google Scholar 

  16. Duffy JE, Richardson JP, France KE (2005) Ecosystem consequences of diversity depend on food chain length in estuarine vegetation. Ecol Lett 8:301–309. doi:10.1111/j.1461-0248.2005.00725.x

    Article  Google Scholar 

  17. Ferrari J, Via S, Godfray HCJ (2008) Population differentiation and genetic variation in performance on eight hosts in the pea aphid complex. Evolution 62:2508–2524. doi:10.1111/j.1558-5646.2008.00468.x

    PubMed  Article  Google Scholar 

  18. Goudard A, Loreau M (2008) Nontrophic interactions, biodiversity, and ecosystem functioning: an interaction web model. Am Nat 171:91–106. doi:10.1086/523945

    PubMed  Article  Google Scholar 

  19. Griffen BD, Byers JE (2006) Partitioning mechanisms of predator interference in different habitats. Oecologia 146:608–614. doi:10.1007/s00442-005-0211-4

    PubMed  Article  Google Scholar 

  20. Hillebrand H, Cardinale BJ (2004) Consumer effects decline with prey diversity. Ecol Lett 7:192–201. doi:10.1111/j.1461-0248.2004.00570.x

    Article  Google Scholar 

  21. Holt RD (1977) Predation, apparent competition, and structure of prey communities. Theor Popul Biol 12:197–229

    PubMed  Article  CAS  Google Scholar 

  22. Holt RD, Lawton JH (1994) The ecological consequences of shared natural enemies. Annu Rev Ecol Syst 25:495–520

    Article  Google Scholar 

  23. Holt RD, Grover J, Tilman D (1994) Simple rules for interspecific dominance in systems with exploitative and apparent competition. Am Nat 144:741–771

    Article  Google Scholar 

  24. Kratina P, Vos M, Anholt BR (2007) Species diversity modulates predation. Ecology 88:1917–1923

    PubMed  Article  Google Scholar 

  25. Kunert G, Weisser WW (2003) The interplay between density- and trait-mediated effects in predator-prey interactions: a case study in aphid wing polymorphism. Oecologia 135:304–312. doi:10.1007/s00442-003-1185-8

    PubMed  Google Scholar 

  26. Kunert G, Otto S, Rose USR, Gershenzon J, Weisser WW (2005) Alarm pheromone mediates production of winged dispersal morphs in aphids. Ecol Lett 8:596–603. doi:10.1111/j.1461-0248.2005.00754.x

    Article  Google Scholar 

  27. LeBrun EG (2005) Who is the top dog in ant communities? Resources, parasitoids, and multiple competitive hierarchies. Oecologia 142:643–652. doi:10.1007/s00442-004-1763-4

    PubMed  Article  Google Scholar 

  28. Leibold MA (1989) Resource edibility and the effects of predators and productivity on the outcome of trophic interactions. Am Nat 134:922–949

    Article  Google Scholar 

  29. Montoya JM, Pimm SL, Sole RV (2006) Ecological networks and their fragility. Nature 442:259–264. doi:10.1038/nature04927

    PubMed  Article  CAS  Google Scholar 

  30. Müller CB, Godfray HCJ (1999) Predators and mutualists influence the exclusion of aphid species from natural communities. Oecologia 119:120–125

    Article  Google Scholar 

  31. Nelson EH (2007) Predator avoidance behavior in the pea aphid: costs, frequency, and population consequences. Oecologia 151:22–32. doi:10.1007/s00442-006-0573-2

    PubMed  Article  Google Scholar 

  32. Palomo G, Botto F, Navarro D, Escapa M, Iribarne O (2003) Does the presence of the sw atlantic burrowing crab Chasmagnathus granulatus Dana affect predator-prey interactions between shorebirds and polychaetes? J Exp Mar Biol Ecol 290:211–228

    Article  Google Scholar 

  33. Peacor SD, Werner EE (2004) How dependent are species-pair interaction strengths on other species in the food web? Ecology 85:2754–2763

    Article  Google Scholar 

  34. Pinheiro J, Bates DM (2000) Mixed effects models in S and S-plus. Springer, New York

    Google Scholar 

  35. Polis GA, Strong DR (1996) Food web complexity and community dynamics. Am Nat 147:813–846

    Article  Google Scholar 

  36. Prasad RP, Snyder WE (2006) Diverse trait-mediated interactions in a multi-predator, multi-prey community. Ecology 87:1131–1137

    PubMed  Article  Google Scholar 

  37. Schmitz OJ, Beckerman AP, Obrien KM (1997) Behaviorally mediated trophic cascades: effects of predation risk on food web interactions. Ecology 78:1388–1399

    Google Scholar 

  38. Schmitz OJ, Hamback PA, Beckerman AP (2000) Trophic cascades in terrestrial systems: a review of the effects of carnivore removals on plants. Am Nat 155:141–153

    PubMed  Article  Google Scholar 

  39. Shiojiri K, Takabayashi J, Yano S, Takafuji A (2001) Infochemically mediated tritrophic interaction webs on cabbage plants. Popul Ecol 43:23–29

    Article  Google Scholar 

  40. Smith RA, Mooney KA, Agrawal AA (2008) Coexistence of three specialist aphids on common milkweed, Asclepias syriaca. Ecology 89:2187–2196

    PubMed  Article  CAS  Google Scholar 

  41. Steiner CF (2001) The effects of prey heterogeneity and consumer identity on the limitation of trophic-level biomass. Ecology 82:2495–2506

    Article  Google Scholar 

  42. Strong DR (1992) Are trophic cascades all wet—differentiation and donor-control in speciose ecosystems. Ecology 73:747–754

    Article  Google Scholar 

  43. R Development Core Team (2007). R: a language and environment for statistical computing. Foundation for statistical computing, Vienna. ISBN 3-900051-07-0. http://www.R-project.org

  44. van Veen FJF, van Holland PD, Godfray HCJ (2005) Stable coexistence in insect communities due to density- and trait-mediated indirect effects. Ecology 86:3182–3189

    Article  Google Scholar 

  45. van Veen FJF, Morris RJ, Godfray HCJ (2006) Apparent competition, quantitative food webs, and the structure of phytophagous insect communities. Annu Rev Entomol 51:187–208. doi:10.1146/annurev.ento.51.110104.151120

    PubMed  Article  CAS  Google Scholar 

  46. van Veen FJF, Müller CB, Pell JK, Godfray HCJ (2008) Food web structure of three guilds of natural enemies: predators, parasitoids and pathogens of aphids. J Anim Ecol 77:191–200

    PubMed  Article  Google Scholar 

  47. Vos M, Berrocal SM, Karamaouna F, Hemerik L, Vet LEM (2001) Plant-mediated indirect effects and the persistence of parasitoid-herbivore communities. Ecol Lett 4:38–45

    Article  Google Scholar 

  48. Vos M, Vet LEM, Wackers FL, Middelburg JJ, van der Putten WH, Mooij WM, Heip CHR, van Donk E (2006) Infochemicals structure marine, terrestrial and freshwater food webs: implications for ecological informatics. Ecol Informatics 1:23–32. doi:10.1016/j.ecoinf.2005.06.001

    Article  Google Scholar 

  49. Xiong HZ, Dong HF (1992) Experiments on rearing and greenhouse release of the larvae of Metasyrphus corollae (Dip.: Syrphidae). Chin J Biol Control 8:6–9

    Google Scholar 

Download references

Acknowledgements

This work was funded by the UK Natural Environment Research Council and complies with UK law.

Author information

Affiliations

Authors

Corresponding author

Correspondence to F. J. Frank van Veen.

Additional information

Communicated by Wolfgang Weiser.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 29 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

van Veen, F.J.F., Brandon, C.E. & Godfray, H.C.J. A positive trait-mediated indirect effect involving the natural enemies of competing herbivores. Oecologia 160, 195–205 (2009). https://doi.org/10.1007/s00442-009-1288-y

Download citation

Keywords

  • Aphid
  • Apparent competition
  • Coexistence
  • Indirect interaction
  • Syrphidae