Advertisement

Oecologia

, Volume 159, Issue 1, pp 117–126 | Cite as

Synergistic effects of an extreme weather event and habitat fragmentation on a specialised insect herbivore

  • Katrien PiessensEmail author
  • Dries Adriaens
  • Hans Jacquemyn
  • Olivier Honnay
Plant-Animal Interactions - Original Paper

Abstract

Habitat fragmentation is considered to be one of the main causes of population decline and species extinction worldwide. Furthermore, habitat fragmentation can decrease the ability of populations to resist and to recover from environmental disturbances such as extreme weather events, which are expected to occur at an increasing rate as a result of climate change. In this study, we investigated how calcareous grassland fragmentation affected the impact of the climatically extreme summer of 2003 on egg deposition rates, population size variation and survival of the blue butterfly Cupido minimus, a specialist herbivore of Anthyllis vulneraria. Immediately after the 2003 summer heat wave, populations of the host plant declined in size; this was paralleled with decreases in population size of the herbivore and altered egg deposition rates. In 2006 at the end of the monitoring period, however, most A. vulneraria populations had recovered and only one population went extinct. In contrast, several butterfly populations had gone extinct between 2003 and 2006. Extinction probability was significantly related to initial population size, with small populations having a higher risk of extinction than large populations. These results support the prediction that species of higher trophic levels are more susceptible to extinction due to habitat fragmentation and severe disturbances.

Keywords

Calcareous grassland Climate change Trophic interaction Cupido minimus Anthyllis vulneraria 

Notes

Acknowledgements

We would like to thank three anonymous referees and Ingolf Steffan-Dewenter for their thoughtful and detailed comments on this manuscript. Jan Butaye, Tom Neels and Eric Van Beek helped with data collection. This research is part of the BIOCORE research project, funded by the Federal Belgian Science Policy. D. A. held a grant from the Flemish Fund for Scientific Research (FWO).

References

  1. Adriaens D, Honnay O, Hermy M (2006) No evidence of a plant extinction debt in highly fragmented calcareous grasslands in Belgium. Biol Conserv 133:212–224CrossRefGoogle Scholar
  2. Adriaens D, Honnay O, Hermy M (2007) Does seed retention potential affect the distribution of plant species in highly fragmented calcareous grasslands? Ecography 30:505–514Google Scholar
  3. Andrén H (1994) Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71:355–366CrossRefGoogle Scholar
  4. Asher J, Warren M, Fox R, Harding P, Jeffcoate G, Jeffcoate S (2001) The millennium atlas of butterflies in Britain and Ireland. Oxford University Press, OxfordGoogle Scholar
  5. Baguette M, Petit S, Quéva F (2000) Population spatial structure and migration of three butterfly species within the same habitat network: consequences for conservation. J Appl Ecol 37:100–108CrossRefGoogle Scholar
  6. Bastrenta B, Lebreton JD, Thompson JD (1995) Predicting demographic change in response to herbivory: a model of the effects of grazing and annual variation on the population dynamics of Anthyllis vulneraria. J Ecol 83:603–611CrossRefGoogle Scholar
  7. Brown JH, Kodric-Brown A (1977) Turnover rates in insular biogeography: effect of immigration on extinction. Ecology 58:445–449CrossRefGoogle Scholar
  8. Burnham KP, Anderson DR (2002) Model selection and inference—a practical information-theoretic approach. Springer, Berlin Heidelberg New YorkGoogle Scholar
  9. Cowley MJR, Thomas CD, Roy DB, Wilson RJ, Léon-Cortés JL, Gutierrez D, Bulman CR, Quinn RM, Moss D, Gaston KJ (2001) Density-distribution relationships in British butterflies. I. The effect of mobility and spatial scale. J Anim Ecol 70:410–425CrossRefGoogle Scholar
  10. Eriksson O, Ehrlén J (2001) Landscape fragmentation and the viability of plant populations. In: Silvertown J, Antonovics J (eds) Integrating ecology and evolution in a spatial context. Blackwell Science, Oxford, pp 157–175Google Scholar
  11. Goffart P, Baguette M, De Bast B (1992) La situation des Lépidopthères Rhopalocères en Wallonie ou que sont nos papillons devenus? Bull Ann Soc R Belg Entomol 128:355–392Google Scholar
  12. Hanski I (1994) A practical model of metapopulation dynamics. J Anim Ecol 63:151–162CrossRefGoogle Scholar
  13. Hanski I, Pakkala T, Kuussaari M, Lei G (1995) Metapopulation persistence of an endangered butterfly in a fragmented landscape. Oikos 72:21–28CrossRefGoogle Scholar
  14. Hanski I (1999) Metapopulation ecology. Oxford University Press, New YorkGoogle Scholar
  15. Holt RD, Lawton JH, Polis GA, Martinez ND (1999) Trophic rank and the species-area relationship. Ecology 80:1495–1504Google Scholar
  16. Honnay O, Jacquemyn H, Bossuyt B, Hermy M (2005) Forest fragmentation effects on patch occupancy and population viability of herbaceous plant species. New Phytol 166:723–736PubMedCrossRefGoogle Scholar
  17. Jentsch A, Kreyling J, Beierkuhnlein C (2007) A new generation of climate-change experiments: events, not trends. Front Ecol Environ 5:365–374CrossRefGoogle Scholar
  18. Kenward MG, Roger JH (1997) Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 53:983–997PubMedCrossRefGoogle Scholar
  19. Kéry M, Matthies D, Fischer M (2001) The effect of population size on the interactions between the rare plant Gentiana cruciata and its specialized herbivore Maculinea rebeli. J Ecol 89:418–427CrossRefGoogle Scholar
  20. Krauss J, Steffan-Dewenter I, Müller CB, Tscharntke T (2005) Relative importance of resource quantity, isolation and habitat quality for landscape distribution of a monophageous butterfly. Ecography 28:465–474CrossRefGoogle Scholar
  21. Krauss J, Steffan-Dewenter I, Tscharntke T (2004) Landscape occupancy and local population size depends on host plant distribution in the butterfly Cupido minimus. Biol Conserv 120:355–361CrossRefGoogle Scholar
  22. Kruess A, Tscharntke T (2000) Species richness and parasitism in a fragmented landscape: experiments and field studies with insects on Vicia sepium. Oecologia 122:129–137CrossRefGoogle Scholar
  23. Lambinon J, De Langhe JE, Delvosalle L, Duvigneaud J (1998) Flora van België, het Groothertogdom Luxemburg, Noord-Frankrijk en de aangrenzende gebieden. Nationale Plantentuin België, MeiseGoogle Scholar
  24. León-Cortés JL, Lennon JJ, Thomas CD (2003) Ecological dynamics of extinct species in empty habitat networks. 2. The role of host plant dynamics. Oikos 102:465–477CrossRefGoogle Scholar
  25. Littell RC, Milliken GA, Stroup WW, Wolfinger RD, Schabenberger O (2006) SAS for mixed Models, 2nd edn. SAS Institute, CaryGoogle Scholar
  26. Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303:1499–1503PubMedCrossRefGoogle Scholar
  27. Maes D, Van Dyck H (1999) Dagvlinders in Vlaanderen-Ecologie, verspreiding en behoud. Stichting Leefmilieu, Instituut voor Natuurbehoud, Vlaamse Vlinderwerkgroep, Antwerpen, BrusselGoogle Scholar
  28. McLaughlin JF, Hellman JJ, Boggs CL, Ehrlich PR (2002) Climate change hastens population extinctions. Proc Natl Acad Sci USA 99:6070–6074PubMedCrossRefGoogle Scholar
  29. Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305:994–997PubMedCrossRefGoogle Scholar
  30. Mouthon J, Daufresne M (2006) Effects of the 2003 heathwave and climatic warming on mollusc communities of the Saöne: a large lowland river and of its two main tributaries (France). Glob Change Biol 12:441–449CrossRefGoogle Scholar
  31. Opdam P, Wascher D (2004) Climate change meets habitat fragmentation: linking landscape and biogeographical scale levels in research and conservation. Biol Conserv 117:285–297CrossRefGoogle Scholar
  32. Piha H, Luoto M, Piha M, Merilä J (2007) Anuran abundance and persistence in agricultural landscapes during a climatic extreme. Glob Change Biol 13:300–311CrossRefGoogle Scholar
  33. Pimm SL, Lee Jones H, Diamond J (1988) On the risk of extinction. Am Nat 132:757–785CrossRefGoogle Scholar
  34. Rouault G, Candau JN, Lieutier F, Nageleisen LM, Martin JC, Warzée N (2006) Effects of drought and heat on forest insect populations in relation to the 2003 drought in Western Europe. Ann For Sci 63:613–624CrossRefGoogle Scholar
  35. Sala OE, Chapin FS, Armesto JJ et al (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774PubMedCrossRefGoogle Scholar
  36. SAS (2002) SAS 9.1. SAS Institute, CaryGoogle Scholar
  37. Shaffer ML (1981) Minimum population sizes for species conservation. Bioscience 31:131–134CrossRefGoogle Scholar
  38. Singer JD (1998) Using SAS PROC MIXED to fit multilevel models, hierarchical models, and individual growth models. J Educ Behav Stat 24:323–355Google Scholar
  39. SPSS (2003) SPSS 12. SPSS, ChicagoGoogle Scholar
  40. Steffan-Dewenter I, Tscharntke T (2002) Insect communities and biotic interactions on fragmented calcareous grasslands-a mini review. Biol Conserv 104:275–284CrossRefGoogle Scholar
  41. Sterk AA, Van Duijkeren A, Hogervorst J, Verbeek EDM (1982) Demographic studies of Anthyllis vulneraria L. in the Netherlands. II. Population density fluctuations and adaptations to arid conditions, seed populations, seedling mortality, and influence of the biocenosis on demographic features. Acta Bot Neerl 31:11–40Google Scholar
  42. Thomas CD, Cameron A, Green RE et al (2004) Extinction risk from climate change. Nature 427:145–148PubMedCrossRefGoogle Scholar
  43. Travis JMJ (2003) Climate change and habitat destruction: a deadly anthropogenic cocktail. Proc R Soc B Biol Sci 270:467–473CrossRefGoogle Scholar
  44. Trenberth KE, Jones PD, Ambenie P, Bojariu R, Easterling D, Klein Tank A, Parker D, Rahimzadeh F, Renwick JA, Rusticucci M, Soden B, Zhai P (2007) Observations: Surface and Atmospheric Climate Change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 235–336Google Scholar
  45. Tscharntke T, Steffan-Dewenter I, Kruess A, Thies C (2002) Characteristics of insect populations on habitat fragments: a mini review. Ecol Res 17:229–239CrossRefGoogle Scholar
  46. Van Swaay CAM (2002) The importance of calcareous grasslands for butterflies in Europe. Biol Conserv 104:315–318CrossRefGoogle Scholar
  47. Verbeke G, Molenberghs G (2000) Linear mixed models for longitudinal data. Springer, Berlin Heidelberg New YorkGoogle Scholar
  48. Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of earth’s ecosystems. Science 277:494–499CrossRefGoogle Scholar
  49. Weeda EJ, Westra R, Westra C, Westra T (1987) Nederlandse oecologische flora. Wilde planten en hun relaties 2. IVN-VARA-EWIN, HilversumGoogle Scholar
  50. Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418CrossRefGoogle Scholar
  51. Zabel J, Tscharntke T (1998) Does fragmentation of Urtica habitats affect phytophagous and predatory insects differentially? Oecologia 116:419–425CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Katrien Piessens
    • 1
    Email author
  • Dries Adriaens
    • 1
  • Hans Jacquemyn
    • 2
  • Olivier Honnay
    • 2
  1. 1.Division Forest, Nature and LandscapeUniversity of LeuvenLeuvenBelgium
  2. 2.Laboratory of Plant EcologyUniversity of LeuvenLeuvenBelgium

Personalised recommendations