Skip to main content
Log in

Arbuscular mycorrhizal symbiosis increases host plant acceptance and population growth rates of the two-spotted spider mite Tetranychus urticae

  • Plant-Animal Interactions - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

An Erratum to this article was published on 01 December 2010

Abstract

Most terrestrial plants live in symbiosis with arbuscular mycorrhizal (AM) fungi. Studies on the direct interaction between plants and mycorrhizal fungi are numerous whereas studies on the indirect interaction between such fungi and herbivores feeding on aboveground plant parts are scarce. We studied the impact of AM symbiosis on host plant choice and life history of an acarine surface piercing-sucking herbivore, the polyphagous two-spotted spider mite Tetranychus urticae. Experiments were performed on detached leaflets taken from common bean plants (Phaseolus vulgaris) colonized or not colonized by the AM fungus Glomus mosseae. T. urticae females were subjected to choice tests between leaves from mycorrhizal and non-mycorrhizal plants. Juvenile survival and development, adult female survival, oviposition rate and offspring sex ratio were measured in order to estimate the population growth parameters of T. urticae on either substrate. Moreover, we analyzed the macro- and micronutrient concentration of the aboveground plant parts. Adult T. urticae females preferentially resided and oviposited on mycorrhizal versus non-mycorrhizal leaflets. AM symbiosis significantly decreased embryonic development time and increased the overall oviposition rate as well as the proportion of female offspring produced during peak oviposition. Altogether, the improved life history parameters resulted in significant changes in net reproductive rate, intrinsic rate of increase, doubling time and finite rate of increase. Aboveground parts of colonized plants showed higher concentrations of P and K whereas Mn and Zn were both found at lower levels. This is the first study documenting the effect of AM symbiosis on the population growth rates of a herbivore, tracking the changes in life history characteristics throughout the life cycle. We discuss the AM-plant-herbivore interaction in relation to plant quality, herbivore feeding type and site and the evolutionary implications in a multi-trophic context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen MF (1996) The ecology of arbuscular mycorrhizas: a look back into the 20th century and a peek into the 21st. Mycol Res 100:769–782

    Article  Google Scholar 

  • Awmack CS, Leather SR (2002) Host plant quality and fecundity in herbivorous insects. Annu Rev Entomol 47:817–844

    Article  PubMed  CAS  Google Scholar 

  • Bennett AE, Alers-Garcia J, Bever JD (2006) Three-way interactions among mutualistic mycorrhizal fungi, plants, and plant enemies: hypotheses and synthesis. Am Nat 167:141–152

    Article  PubMed  Google Scholar 

  • Bennett AE, Bever JD (2007) Mycorrhizal species differentially alter plant growth and response to herbivory. Ecology 88:210–218

    Article  PubMed  Google Scholar 

  • Benton TG, Plaistow SJ, Beckerman AP, Lapsley CT, Littlejohns S (2005) Changes in maternal investment in eggs can affect population dynamics. Proc R Soc B Biol Sci 272:1351–1356

    Article  CAS  Google Scholar 

  • Bernardo J (1996) Maternal effects in animal ecology. Am Zool 36:83–105

    Google Scholar 

  • Bolland HR, Gutierrez J, Flechtmann CHW (1998) World catalogue of the spider mite family (Acari, Tetranychidae). Brill, Leiden

    Google Scholar 

  • Borowicz VA (1997) A fungal root symbiont modifies plant resistance to an insect herbivore. Oecologia 112:534–542

    Article  Google Scholar 

  • Bowman RA (1989) A sequential extraction procedure with concentrated sulfuric acid and dilute base for soil organic phosphorus. Soil Sci Soc Am J 53:362–366

    Article  CAS  Google Scholar 

  • Cannon WN, Terriere LC (1966) Egg production of the two-spotted spider mite on bean plants supplied nutrient solutions containing various concentrations of iron, manganese, zinc and cobalt. J Econ Entomol 59:89–90

    CAS  Google Scholar 

  • Cole LC (1954) The population consequences of life history phenomena. Q Rev Biol 29:103–137

    Article  PubMed  CAS  Google Scholar 

  • Gange AC (2007) Insect-mycorrhizal interactions: patterns, processes, and consequences. In: Ohgushi T, Craig P, Price PW (eds) Ecological communities: plant mediation in indirect interaction webs. Cambridge University Press, Cambridge, pp 134–144

  • Gange AC, Bower E, Brown VK (2002) Differential effects of insect herbivory on arbuscular mycorrhizal colonization. Oecologia 131:103–112

    Article  Google Scholar 

  • Gange AC, Brown VK, Aplin DM (2003) Multitrophic links between arbuscular mycorrhizal fungi and insect parasitoids. Ecol Lett 6:1051–1055

    Article  Google Scholar 

  • Gange AC, Nice HE (1997) Performance of the thistle gall fly, Urophora cardui, in relation to host plant nitrogen and mycorrhizal colonization. New Phytol 137:335–343

    Article  Google Scholar 

  • Gange AC, West HM (1994) Interactions between arbuscular mycorrhizal fungi and foliar-feeding insects in Plantago lanceolata L. New Phytol 128:79–87

    Article  Google Scholar 

  • Gehring CA, Whitham TG (2002) Mycorrhizae-herbivore interactions: population and community consequences. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin, pp 295–320

    Google Scholar 

  • Goverde M, van der Heijden MGA, Wiemken A, Sanders IR, Erhardt A (2000) Arbuscular mycorrhizal fungi influence life history traits of a lepidopteran herbivore. Oecologia 125:362–369

    Article  Google Scholar 

  • Guerrieri E, Lingua G, Digilio MC, Massa N, Berta G (2004) Do interactions between plant roots and the rhizosphere affect parasitoid behaviour? Ecol Entomol 29:753–756

    Article  Google Scholar 

  • Hart M, Klironomos JN (2002) Diversity of arbuscular mycorrhizal fungi and ecosystem functioning. In: van der Hejden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin, pp 225–239

    Google Scholar 

  • Helle W, Sabelis MW (eds) (1985) Spider mites: their biology, natural enemies and control. Elsevier, Amsterdam

  • Kagata H, Ohgushi T (2006) Bottom-up trophic cascades and material transfer in terrestrial food webs. Ecol Res 21:26–34

    Article  Google Scholar 

  • Khaosaad T, Krenn L, Medjakovic S, Ranner A, Lössl A, Nell M, Jungbauer A, Vierheilig H (2008) Effect of mycorrhization on the isoflavone content and the phytoestrogen activity of red clover. J Plant Physiol 165:1161–1167

    Article  PubMed  CAS  Google Scholar 

  • Koide RT, Mosse B (2004) A history of research on arbuscular mycorrhiza. Mycorrhiza 14:145–163

    Article  PubMed  Google Scholar 

  • Koschier EH, Khaosaad T, Vierheilig H (2007) Root colonization by the arbuscular mycorrhizal fungus Glomus mosseae and enhanced phosphorous levels in cucumber do not affect host acceptance and development of Frankliniella occidentalis. J Plant Interact 2:11–15

    Article  CAS  Google Scholar 

  • Kula AAR, Hartnett DC, Wilson GWT (2005) Effects of mycorrhizal symbiosis on tallgrass prairie plant-herbivore interactions. Ecol Lett 8:61–69

    Article  Google Scholar 

  • Maia ADN, Luiz AJB, Campanhola C (2000) Statistical inference on associated fertility life table parameters using jackknife technique: computational aspects. J Econ Entomol 93:511–518

    Article  Google Scholar 

  • Munkvold L, Kjoller R, Vestberg M, Rosendahl S, Jakobsen I (2004) High functional diversity within species of arbuscular mycorrhizal fungi. New Phytol 164:357–364

    Article  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for determination of phosphate in natural waters. Anal Chim Acta 26:31–32

    Article  Google Scholar 

  • Newman EI (1966) A method of estimating total length of root in a sample. J Appl Ecol 3:139–140

    Article  Google Scholar 

  • Ponce MA, Scervino JM, Erra-Balsells R, Ocampo JA, Godeas AM (2004) Flavonoids from shoots and roots of Trifolium repens (white clover) grown in presence or absence of the arbuscular mycorrhizal fungus Glomus intraradices. Phytochemistry 65:1925–1930

    Article  PubMed  CAS  Google Scholar 

  • Potter DA, Wrensch DL, Johnston DE (1976) Aggression and mating success in male spider mites. Science 193:160–161

    Article  PubMed  CAS  Google Scholar 

  • Rabin LB, Pacovsky RS (1985) Reduced larva growth of two Lepidoptera (Noctuidae) on excised leaves of soybean infected with a mycorrhizal fungus. J Econ Entomol 78:1358–1363

    Google Scholar 

  • Read DJ (1998) Mycorrhiza—the state of the art. In: Varma A, Hock B (eds) Mycorrhiza. Springer, Berlin, pp 3–34

    Google Scholar 

  • Rodriguez JG (1954) Radiophosphorus in metabolism studies in the 2-spotted spider mite. J Econ Entomol 47:514–517

    CAS  Google Scholar 

  • Rodriguez JG, Rodriguez LD (1987) Nutritional ecology of phytophagous mites. In: Slansky F, Rodriguez J (eds) Nutritional ecology of insects, mites and spiders. Wiley, New York, pp 177–205

    Google Scholar 

  • Roy M, Brodeur J, Cloutier C (2003) Temperature and sex allocation in a spider mite. Oecologia 135:322–326

    PubMed  Google Scholar 

  • Sabelis MW (1985) Reproductive strategies. In: Helle W, Sabelis MW (eds) Spider mites: their biology, natural enemies and control, vol 1A. Elsevier, Amsterdam, pp 265–276

    Google Scholar 

  • Sabelis MW, Van Baalen M, Bakker FM, Bruin J, Drukker B, Egas M, Janssen ARM, Lesna IK, Pels B, Van Rijn PCJ, Scutareanu P (1999) The evolution of direct and indirect plant defence against herbivorous arthropods. In: Olff H, Brown VK, Drent RH (eds) Herbivores: between plants and predators. Blackwell, Oxford, pp 109–166

    Google Scholar 

  • Schoonhoven LM, Jeremy T, van Loon JJA (1998) Insect-plant biology: from physiology to evolution. Chapman & Hall, London

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Strauss SY, Agrawal AA (1999) The ecology and evolution of plant tolerance to herbivory. Trends Ecol Evol 14:179–185

    Article  PubMed  Google Scholar 

  • Suski ZW, Badowska T (1975) Effect of host plant nutrition on the population growth of the two spotted spider mite, Tetranychus urticae Koch (Acarina, Tetranychidae). Ekol Polska 23:185–209

    Google Scholar 

  • Thomas RL, Sheard RW, Moyer JR (1967) Comparison of conventional and automated procedures for nitrogen, phosphorus and potassium analysis of plant material using a single digestion. Agron J 59:240

    Google Scholar 

  • Tomczyk A, Kropczynska D (1985) Effects on the host plant. In: Helle W, Sabelis MW (eds) Spider mites: their biology, natural enemies and control, vol 1A. Elsevier, Amsterdam, pp 317–327

    Google Scholar 

  • Vanas V, Enigl M, Walzer A, Schausberger P (2006) The predatory mite Phytoseiulus persimilis adjusts patch-leaving to own and progeny prey needs. Exp Appl Acarol 39:1–11

    Article  PubMed  CAS  Google Scholar 

  • van der Meijden E (1996) Plant defence, an evolutionary dilemma: contrasting effects of (specialist and generalist) herbivores and natural enemies. Entomol Exp Appl 80:307–310

    Article  Google Scholar 

  • Vicari M, Hatcher PE, Ayres PG (2002) Combined effect of foliar and mycorrhizal endophytes on an insect herbivore. Ecology 83:2452–2464

    Article  Google Scholar 

  • Vierheilig H, Coughlan AP, Wyss U, Piche Y (1998) Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl Environ Microbiol 64:5004–5007

    PubMed  CAS  Google Scholar 

  • Walzer A, Paulus HF, Schausberger P (2006) Oviposition behavior of interacting predatory mites: response to the presence of con- and heterospecific eggs. J Insect Behav 19:305–320

    Article  Google Scholar 

  • Wamberg C, Christensen S, Jakobsen I (2003) Interaction between foliar-feeding insects, mycorrhizal fungi, and rhizosphere Protozoa on pea plants. Pedobiologia 47:281–287

    Article  Google Scholar 

  • Wermelinger B, Oertli JJ, Baumgartner J (1991) Environmental factors affecting the life-tables of Tetranychus urticae (Acari, Tetranychidae). III. Host-plant nutrition. Exp Appl Acarol 12:259–274

    Article  Google Scholar 

  • Wooley SC, Paine TD (2007) Can intra-specific genetic variation in arbuscular mycorrhizal fungi (Glomus etunicatum) affect a mesophyll-feeding herbivore (Tupiocoris notatus Distant)? Ecol Entomol 32:428–434

    Article  Google Scholar 

  • Wrensch DL (1985) Reproductive parameters. In: Helle W, Sabelis MW (eds) Spider mites: their biology, natural enemies and control, vol 1A. Elsevier, Amsterdam, pp 165–170

    Google Scholar 

  • Wrensch DL, Young SSY (1983) Relationship between primary and tertiary sex ratio in the 2-spotted spider-mite (Acarina, Tetranychidae). Ann Entomol Soc Am 76:786–789

    Google Scholar 

  • Yano S, Wakabayashi M, Takabayashi J, Takafuji A (1998) Factors determining the host plant range of the phytophagous mite, Tetranychus urticae (Acari: Tetranychidae): a method for quantifying host plant acceptance. Exp Appl Acarol 22:595–601

    Article  Google Scholar 

Download references

Acknowledgements

We thank Andreas Walzer and Laté M. Lawson-Balagbo, both at the Institute of Plant Protection, BOKU, Vienna, for helpful comments on the manuscript and Andreas Lössl, Institute of Agronomy and Plant Breeding, BOKU, Vienna, for nutrient analysis. Daniela Hoffmann is a recipient of a DOC-FForte fellowship of the Austrian Academy of Sciences. All experiments performed comply with the current laws of Austria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Hoffmann.

Additional information

Communicated by Roland Brandl.

An erratum to this article is available at http://dx.doi.org/10.1007/s00442-010-1852-5.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffmann, D., Vierheilig, H., Riegler, P. et al. Arbuscular mycorrhizal symbiosis increases host plant acceptance and population growth rates of the two-spotted spider mite Tetranychus urticae . Oecologia 158, 663–671 (2009). https://doi.org/10.1007/s00442-008-1179-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-008-1179-7

Keywords

Navigation