Skip to main content

Advertisement

Log in

Differences in AM fungal root colonization between populations of perennial Aster species have genetic reasons

  • Population Ecology - Orgiginal Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

We tested the hypothesis whether differences between plant populations in root colonization by arbuscular mycorrhizal (AM) fungi could be caused by genetic differentiation between populations. In addition, we investigated whether the response to AM fungi differs between plants from different populations and if it is affected by the soil in which the plants are cultivated. We used Aster amellus, which occurs in fragmented dry grasslands, as a model species and we studied six different populations from two regions, which varied in soil nutrient concentration.

We found significant differences in the degree of mycorrhizal colonization of plant roots between regions in the field. To test if these differences were due to phenotypic plasticity or had a genetic basis, we performed a greenhouse experiment. The results suggested that Aster amellus is an obligate mycotrophic plant species with a high dependency upon mycorrhiza. Plant biomass was affected only by soil, and not by population or the interaction between the population and the soil. Mycorrhizal colonization was significantly affected by all three factors (soil, population, interaction of soil and population). Plants from the population originating from the soil with lower nutrient availability developed more mycorrhiza even when grown in soil with higher nutrient availability. The correspondence between mycorrhizal colonization of plants in the field and in both soils in the pot experiment suggests that the observed differences in root colonization have a genetic basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Karaki GN, Hammad R, Rusan M (2001) Response of two cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza 11:43–47

    Article  CAS  Google Scholar 

  • Avio L, Pellegrino E, Bonari E, Giovannetti M (2006) Functional diversity of arbuscular mycorrhizal fungal isolates in relation to extraradical mycelial networks. New Phytol 172:347–357

    Article  PubMed  Google Scholar 

  • Batty AL, Dixon KW, Brundrett M, Sivasithamparam K (2001) Long-term storage of mycorrhizal fungi and seed as a tool for the conservation of endangered Western Australian terrestrial orchids. Aust J Bot 49:619–628

    Article  Google Scholar 

  • Bever JD (1994) Feedback between plants and their soil communities in an old field community. Ecology 75:1965–1977

    Article  Google Scholar 

  • Blanke V, Renker C, Wagner M, Fullner K, Held M, Kuhn AJ, Buscot F (2005) Nitrogen supply affects arbuscular mycorrhizal colonization of Artemisia vulgaris in a phosphate-polluted field site. New Phytol 166:981–992

    Article  PubMed  CAS  Google Scholar 

  • Briggs D, Walters SM (1997) Plant variation and evolution. Cambridge University Press

  • Clapperton MJ, Reid DM (1992) A relationship between plant growth and increasing VA mycorrhizal inoculum density. New Phytol 120:227–234

    Article  Google Scholar 

  • Dědina J (1987) Selected methods of analytic atom spectrochemistry. Československá spektroskopická společnost [in Czech]

  • De Grandcourt A, Epron D, Montpied P, Louisanna E, Bereau M, Garbaye J, Guehl JM (2004) Contrasting responses to mycorrhizal inoculation and phosphorus availability in seedlings of two tropical rainforest tree species. New Phytol 161:865–875

    Article  Google Scholar 

  • Diaz G, Azcön-Aquilar C, Honrubia M (1996) Influence of arbuscular mycorrhizae on heavy metal (Zn and Pb) uptake and growth of Lygeum spartum and Anthyllis cytisoides. Plant Soil 180:241–249

    Article  CAS  Google Scholar 

  • Diederichs C (1983) Influence of light on the efficacy of vesicular-arbuscular mycorrhiza in tropical an subtropical plants II. Effect of light intensity under growth chamber conditions. Angewandte Botanik 57:45–53

    Google Scholar 

  • Douds DD, Janke RR, Peters SE (1993) VAM fungus spore populations and colonization of roots of maize and soybean under conventional and low-input sustainable agriculture. Agric Ecosyst Environ 43:325–335

    Article  Google Scholar 

  • Ehrenberger F, Gorbach S (l973) Methoden der organischen Elementar- und Spurenanalyse. Verlag Chemie. Berlin

  • Ellenberg H (1998) Vegetation ecology of central Europe. Cambridge University Press, Cambridge

    Google Scholar 

  • Fay P, Mitchell DT, Osborne BA (1996) Photosynthesis and nutrient-use efficiency of barley in response to low arbuscular mycorrhizal colonization and addition of phosphorus. New Phytol 132:425–433

    Article  CAS  Google Scholar 

  • Francis R, Finlay RD, Read DJ (1986) Vesicular arbuscular mycorrhiza in natural vegetation systems. IV. Transfer of nutriens in iter- and intra-specific combinations of host plants. New Phytol 102:103–111

    Article  Google Scholar 

  • Galloway LF, Fenster CB (2000) Population differentiation in an annual legume: local adaptation. Evolution 54:1173–1181

    PubMed  CAS  Google Scholar 

  • Gange AC, Brown VK, Farmer LM (1990) A test of mycorrhizal benefit in an early successional plant community. New Phytol 115:85–91

    Article  Google Scholar 

  • Garmendia I, Goicoechea N, Aguirreolea J (2004) Effectiveness of three Glomus species in protecting pepper (Capsicum annuum L.) against verticillium wilt. Biol Control 31:296–305

    Article  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • Graham JH, Eissenstat DM, Drouillard DL (1991) On the relationship between a plant’s mycorrhizal dependency and rate of vesicular-arbuscular mycorrhizal colonization. Funct Ecol 5:773–779

    Article  Google Scholar 

  • Hartnett DC, Hetrick BAD, Wilson GWT, Gibson DJ (1993) Mycorrhizal influence on intra- and interspecific neighbor interactions among co-occurring prairie grasses. J Ecol 81:787–795

    Article  Google Scholar 

  • Heppell KB, Shumway DL, Koide RT (1998) The effect of Mycorrhizal infection of Abutilon theophrasti on competitiveness of offspring. Funct Ecol 12:171–175

    Article  Google Scholar 

  • Hildebrandt U, Kaldorf M, Bothe H (1999) The zinc violet and its colonization by arbuscular mycorrhizal fungi. J Plant Physiol 154:709–717

    CAS  Google Scholar 

  • Holub J, Procházka F (2000) Red list of vascular plants of the Czech Republic. Preslia 72:187–230

    Google Scholar 

  • ISO 10693 (1995) Soil quality-Determination of carbonate content-volumetric method, International Organization for Standardization

  • Janos DP (1980) Mycorrhizae influence tropical succession. Biotropica 12 (Suppl. S):56–64

  • Jansa J, Mozafar A, Frossard E (2005) Phosphorus acquisition strategies within arbuscular mycorrhizal fungal community of a single field site. Plant Soil 276:163–176

    Article  CAS  Google Scholar 

  • Jakobsen I, Abbott LK, Robson AD (1992) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 1. Spread of hyphae and phosphorus inflow into roots. New Phytol 120:371–380

    Article  CAS  Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16

    Google Scholar 

  • Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism–parasitism continuum. New Phytol 135:575–586

    Article  Google Scholar 

  • Jordan N (1992) Path analysis of local adaptation in two ecotypes of the annual plant Diodia teres Walt. (Rubiaceae). Am Nat 140:149–165

    Article  CAS  PubMed  Google Scholar 

  • Joshi J, Schmid B, Caldeira MC, Dimitrakopoulos PG, Good J, Harris R, Hector A, Huss-Danell K, Jumpponen A, Minns A, Mulder CPH, Pereira JS, Prinz A, Scherer-Lorenzen M, Siamantziouras ASD, Terry AC, Troumbis AY, Lawton JH (2001) Local adaptation enhances performance of common plant species. Ecol Lett 4:536–544

    Article  Google Scholar 

  • Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7:1225–1241

    Article  Google Scholar 

  • Khurana E, Singh JS (2001) Ecology of seed and seedling growth for conservation and restoration of tropical dry forest: a review. Environ Conserv 28:39–52

    Article  Google Scholar 

  • Kindell CE, Winn AA, Miller TE (1996) The effect of surrounding vegetation and transplant age on the detection of local adaptation in the perennial grass Aristida stricta. J Ecol 84:745–754

    Article  Google Scholar 

  • Koide RT, Dickie IA (2002) Effects of mycorrhizal fungi on plant populations. Plant Soil 244:307–317

    Article  CAS  Google Scholar 

  • Koide RT, Goff MD, Dickie IA (2000) Component growth efficiencies of mycorrhizal and nonmycorrhizal plants. New Phytol 148:163–168

    Article  Google Scholar 

  • Koide RT, Lu XH (1992) Mycorrhizal infection of wild oats–maternal effects on offspring growth and reproduction. Oecologia 90:218–226

    Google Scholar 

  • Koske RE, Gemma JN (1989) A modified procedure for staining roots to detect VA-mycorrhizas. Mycol Res 92:486–505

    Google Scholar 

  • Krahulcová A (1990) Selected chromosome counts of the Czechoslovak flora 2. Folia Geobotanica et Phytotaxonomica 25:381–388

    Article  Google Scholar 

  • Lackie SM, Bowley SR, Peterson RL (1988) Comparison of colonization among half-sib families of Medicago sativa L. by Glomus versiforme (Daniels and Trappe) Berch. New Phytol 108:477–482

    Article  Google Scholar 

  • Laing W, Greer D, Sun O, Beets P, Lowe A, Payn T (2000) Physiological impacts of Mg deficiency in Pinus radiata: growth and photosynthesis. New Phytol 146:47–57

    Article  CAS  Google Scholar 

  • Lu X, Koide RT (1991) Avena fatua L. seed and seedling nutrient dynamics as influenced by mycorrhizal infection of the maternal generation. Plant Cell Environ 14:931–939

    Article  CAS  Google Scholar 

  • Mandáková T, Münzbergová Z (2006) Distribution and ecology of cytotypes of the Aster amellus aggregates in the Czech Republic. Ann Bot 98:845–856

    Article  PubMed  Google Scholar 

  • Mc Cormick MK, Whigham DF, O’Neill J (2004) Mycorrhizal diversity in photosynthetic terrestrial orchids. New Phytol 163:425–438

    Article  Google Scholar 

  • Merryweather J, Fitter A (1995) Arbuscular mycorrhizal and phosphorus as controlling factors in the life-history of Hyacinthoides non-scripta (L). New Phytol 129:629–636

    Article  Google Scholar 

  • Merxmüller H, Schreiber A, Yeo PF (1976) In: Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (eds) Aster L. Flora Europaea, vol 4. Cambridge University Press, London, pp 112–116

  • Meusel H, Jäger E (1992) Vergleichende chorologie der Zentraleuropäischen flora. Gustav Fischer Verlag, Jena

    Google Scholar 

  • Moore PD, Chapman SB (eds) (1986) Methods in plant ecology. Blackwell Scientific Publications, Oxford

  • Moravec J (1995) Rostlinná společenstva České republiky a jejich ohrožení. Severočeskou přírodou, Litoměřice [in Czech], pp 1–206

  • Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circ 939:1–19

    Google Scholar 

  • Olsen SR, Sommers LE (1982) Phosphorus. In: Page AL et al (eds) Methods of soil analysis: part 2. Chemical and microbiological properties. Agron. Mongr. vol 9, 2nd edn. ASA and SSSA, Madison, pp 403–430

  • Panwar J, Vyas A (2002) AM fungi: A biological approach towards conservation of endangered plants in Thar desert, India. Curr Sci 82:576–578

    CAS  Google Scholar 

  • Pereira OL, Kasuya MCM, Borges AC, Araújo EF (2005) Morphological and molecular characterization of mycorrhizal fungi isolated from neotropical orchids in Brazil. Can J Bot 83:54–65

    Article  CAS  Google Scholar 

  • Perumal JV, Maun MA (1999) The role of mycorrhizal fungi in growth enhancement of dune plants following burial in sand. Funct Ecol 13:560–566

    Article  Google Scholar 

  • Raabová J, Münzbergová Z, Fischer M (2007) Ecological rather than geographic or genetic distance affects local adaptation of the rare perennial herb, Aster amellus. Biol Conserv 139:348–357

    Article  Google Scholar 

  • Ronsheim ML, Anderson SE (2001) Population-level specificity in the plant-mycorrhizae association alters intraspecific interactions among neighboring plants. Oecologia 128:77–84

    Article  Google Scholar 

  • Ryan MH, Van Herwaarden AF, Angus JF, Kirkegaard JA (2005) Reduced growth of autumn-sown wheat in a low-P soil is associated with high colonisation by arbuscular mycorrhizal fungi. Plant Soil 270:275–286

    Article  CAS  Google Scholar 

  • Schultz PA, Miller RM, Jastrow JD, Rivetta CV, Bever JD (2001) Evidence of a mycorrhizal mechanism for the adaptation of Andropogon gerardii (Poaceae) to high- and low-nutrient prairies. Am J Bot 88:1650–1656

    Article  Google Scholar 

  • Stahl PD, Christensen M (1991) Population variation in the mycorrhizal fungus Glomus mosseae–breadth of environmental tolerance. Mycol Res 95:300–307

    Article  Google Scholar 

  • Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1997) Clonal growth traits of two Prunella species are determined by co-occurring arbuscular mycorrhizal fungi from a calcareous grassland. J Ecol 85:181–191

    Article  Google Scholar 

  • Streitwolf-Engel R, Van der Heijden MGA, Wiemken A, Sanders IR (2001) The Ecological significance of AMF effects on clonal reproduction in plants. Ecology 82:2846–2859

    Article  Google Scholar 

  • Studnička M (1972) Dry grasslands in České Středohoří. A study of ecology and fytocenology. MS thesis, Charles University, Prague [in Czech]

  • Sylvia DM, Alagely AK, Kane ME, Philman NL (2003) Compatible host/mycorrhizal fungus combinations for micropropagated sea oats I. Field sampling and greenhouse evaluations. Mycorrhiza 13:177–183

    Article  PubMed  Google Scholar 

  • Van Aarle IM, Söderström B, Olsson PA (2003) Growth and interactions of arbuscular mycorrhizal fungi in soils from limestone and acid rock habitats. Soil Biol Biochem 35:1557–1564

    Article  CAS  Google Scholar 

  • Van Auken OW, Brown SC (1998) Importance of arbuscular mycorrhizae to dry mass production of a native Texas C-3 and C-4 grass. Tex J Sci 50:291–304

    Google Scholar 

  • Van der Heijden MGA (2002) Arbuscular mycorrhizal fungi as a determinant of plant diversity: in search of underlying mechanisms and general principles. In: Van der Heijden MGA, Sanders IR (eds) Mycorrhizal Ecology. Springer, Berlin, pp 243–265

    Google Scholar 

  • Van der Heijden EW (2001) Differential benefits of arbuscular mycorrhizal and ectomycorrhizal infection of Salix repens. Mycorrhiza 10:185–193

    Article  Google Scholar 

  • Van der Heijden MGA, Wiemken A, Sanders IR (2003) Different arbuscular mycorrhizal fungi alter coexistence and resource distribution between co-occurring plant. New Phytol 157:569–578

    Article  Google Scholar 

  • Wilson JM, Trinick MJ (1982) Factors affecting the estimation of numbers of infective propagules of vesicular arbuscular mycorrhizal fungi by the most probable number method. Aust J Soil Res 21:73–81

    Article  Google Scholar 

  • Wilson GWT, Hartnett DC (1998) Interspecific variation in plant responses to mycorrhizal colonization in tallgrass prairie. Am J Bot 85:1732–1738

    Article  Google Scholar 

Download references

Acknowledgments

Financial support for this study was provided by the Grant Agency of the Academy of Sciences of the Czech Republic (Grants A600050705 and AV0Z60050516) and by the Grant Agency of the Charles University (Grant 199/2005). We declare that the experiments comply with the current laws of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hana Pánková.

Additional information

Communicated by Hakan Wallander.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pánková, H., Münzbergová, Z., Rydlová, J. et al. Differences in AM fungal root colonization between populations of perennial Aster species have genetic reasons. Oecologia 157, 211–220 (2008). https://doi.org/10.1007/s00442-008-1064-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-008-1064-4

Keywords

Navigation