Skip to main content

Advertisement

Log in

Secondary production, calcification and CO2 fluxes in the cirripedes Chthamalus montagui and Elminius modestus

  • Ecosystem Ecology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Calcification, a process common to numerous marine taxa, has traditionally been considered to be a significant source of CO2 in tropical waters only. A number of relatively recent studies, however, have shown that significant amounts of CO2 are also produced in temperate waters, although none of these studies was carried out on rocky shores, which are considered to be very productive systems. We compared the CO2 fluxes due to respiration and calcification in two temperate species, the cirripedes Chthamalus montagui and Elminius modestus. The population dynamics of both species were estimated at two sites during a 1-year experimental period in order to establish mean organic (ash-free dry weight) and CaCO3 (dry shell weight) production. Based on these parameters, we estimated the CO2 fluxes due to respiration and calcification. CaCO3 production was estimated to be 481.0 and \( {\text{1,803}}{\text{.9}}\,{\text{g}}_{{{\text{CaCO}}_{{\text{3}}} }} \,{\text{m}}^{{ - 2}} \,{\text{year}}^{{ - 1}} \) at each site, representing 3.4 and \( {\text{12}}{\text{.7}}\,{\text{mol}}_{{{\text{CO}}_{{\text{2}}} }} \,{\text{m}}^{{ - 2}} \,{\text{year}}^{{ - 1}} \) respectively, of released CO2. These fluxes represent each 47% of the CO2 released as a result of respiration and calcification. The production of CaCO3 at the high-density site was: (1) among the highest values obtained for temperate organisms, and (2) comparable to the estimated CO2 fluxes for coral reefs. As calcifying organisms are well represented in temperate ecosystems in terms of both density and biomass, our results provide clear evidence that calcification of temperate organisms should not be underestimated. Additional studies on other rocky shore taxa are needed before the relative importance of calcification in rocky intertidal carbon budgets can be generalized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anger K (1978) Development of a subtidal epifaunal community at the island of Helgoland. Helgoland Mar Res 31:457–470

    Google Scholar 

  • Anonymous (1986) Fifth report of the benthos ecology working group. International Council for the Exploration of the Sea (ICES), Copenhagen

  • Bahr LMJ (1976) Energetic aspects of the intertidal oyster reef community at Sapelo Island, Georgia (USA). Ecology 57:121–131

    Article  Google Scholar 

  • Bamber RN (1990) The effects of acidic seawater on three species of lamellibranch molluscs. J Exp Mar Biol Ecol 143:181–191

    Article  Google Scholar 

  • Barnes H (1971) Organic production by Elminius modestus Darwin in an enclosed basin. J Exp Mar Biol Ecol 6:79–82

    Article  Google Scholar 

  • Beukema JJ (1980) Calcimass and carbonate production by molluscs on the tidal flats in the Dutch Wadden Sea: I. The tellinid bivalve Macoma baltica. Neth J Sea Res 14:323–339

    Article  CAS  Google Scholar 

  • Beukema JJ (1982) Calcimass and carbonate production by molluscs on the tidal flats in the Dutch Wadden Sea: II The edible cockle, Cerastoderma edule. Neth J Sea Res 15:391–405

    Article  Google Scholar 

  • Bishop MWH (1947) Establishement of an immigrant barnacle in British coastal waters. Nature 159:201–205

    Google Scholar 

  • Bishop MWH (1954) Elminius modestus in France. Nature 173:1145

    Article  Google Scholar 

  • Bishop MWH, Crisp DJ (1958) The distribution of the barnacle Elminius modestus Darwin in France. Proc Zool Soc Lond 131:109–134

    Google Scholar 

  • Borges AV (2005) Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the coastal ocean. Estuaries 28:3–27

    CAS  Google Scholar 

  • Borges AV, Frankignoulle M (2003) Distribution of surface carbon dioxide and air-sea exchange in the English Channel and adjacent areas. J Geophys Res C 108. doi:10.1029/2000JC000571

  • Brey T, Rhumohr H, Ankar S (1988) Energy content of macrobenthic invertebrates: general conversion factors from weight to energy. J Exp Mar Biol Ecol 117:271–278

    Article  Google Scholar 

  • Bustamante RH, Branch GM, Eekhout S, Robertson B, Zoutendyk P, Schleyer M, Dye A, Hanekom N, Keats D, Jurd M, McQuaid C (1995) Gradients of intertidal primary productivity around the coast of South Africa and their relationships with consumer biomass. Oecologia 102:189–201

    Article  Google Scholar 

  • Chan BKK, Williams GA (2004) Population dynamics of the acorn barnacles, Tetraclita squamosa and Tetraclita amurensis (Cirripedia: Balanomorpha), in Hong Kong. Mar Biol 146:149–160

    Article  Google Scholar 

  • Charpy-Roubaud C, Sournia A (1990) The comparative estimation of phytoplanktonic, microphytobenthic and macrophytobenthic primary production in the oceans. Mar Microb Food Webs 4:31–57

    Google Scholar 

  • Chauvaud L, Thompson JK, Cloern JE, Thouzaeu G (2003) Clams as CO2 generators: the Potamocorbula amurensis example in San Francisco Bay. Limnol Oceanogr 48:2086–2092

    Article  CAS  Google Scholar 

  • Chave KE (1967) Recent carbonate sediments – an unconventional view. J Geol Educ 15:200–204

    CAS  Google Scholar 

  • Chiba S, Noda T (2000) Factors maintaining topography-related mosaic of barnacle and mussel on a rocky shore. J Mar Biol Assoc UK 80:617–622

    Article  Google Scholar 

  • Crisp DJ (1984) Energy flow measurements. In: Holme NA, McIntyre AD (eds) Methods for the study of marine benthos, 2nd edn. Blackwell, Oxford, p 387

  • Crisp DJ, Southward AJ, Southward EC (1981) On the distribution of the intertidal barnacles Chthamalus stellatus, Chthamalus montagui and Euraphia depressa. J Mar Biol Assoc UK 61:359–380

    Google Scholar 

  • Cruz T, Castro JJ, Delany J, McGrath D, Myers AA, O’Riordan RM, Power AM, Rabaça J, Hawkins SJ (2005) Tidal rates of settlement of the intertidal barnacles Chthamalus stellatus and Chthamalus montagui in Western Europe: the influence of the night/day cycle. J Exp Mar Biol Ecol 318:51–60

  • Dame R, Vernberg F, Bonnell R, Kitchens W (1977) The North Inlet marsh–estuarine ecosystem: a conceptual approach. Helgoland Mar Res 30:343–356

    Google Scholar 

  • Davoult D, Dewailly F, Migné A (1998) Carbon and nitrogen budget of a dense population of the suspension-feeding ophiuroid Ophiothrix fragilis (Albidgaard) in a macrotidal coastal ecosystem. In: Mooi R, Telford M (eds) Echinoderm. A. A. Balkema, Rotterdam, pp 337–342

    Google Scholar 

  • Drévès L (2001) Effets climatiques sur les écosystèmes marins. Exemple du recrutement des Crustacés Cirripèdes sur la côte ouest du Cotentin. Hydroecol Appl 13:101–112

    Article  Google Scholar 

  • Duarte CM, Middelburg JJ, Caraco NF (2005) Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2:1–8

    Article  CAS  Google Scholar 

  • Dye A (1993) Aspects of the population dynamics of Chthamalus dentatus (crustacea: Cirripedia) on the Transkei coast of Southern Africa. S Afr J Mar Sci 13:25–32

    Google Scholar 

  • Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry VJ, Milero FJ (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305:362–366

    Article  PubMed  CAS  Google Scholar 

  • Frankignoulle M, Canon C, Gattuso J-P (1994) Marine calcification as a source of carbon dioxide: positive feedback of increasing atmospheric CO2. Limnol Oceanogr 39:458–462

    Article  CAS  Google Scholar 

  • Fry WG (1975) Raft fouling in the Menai Strait, 1963–1975. Hydrobiologia 47:527–558

    Article  Google Scholar 

  • Fuji A, Watanabe H, Ogura K, Noda T, Goshima S (1991) Abundance and productivity of microphytobenthos on a rocky shore in southern Hokkaido. Bull Fac Fish Hokkaido Univ 42:136–146

    Google Scholar 

  • Gattuso J-P, Allemand D, Frankignoulle M (1999) Photosynthesis and calcification at cellular, organismal and community levels on coral reefs: a review on interactions and control by carbonate chemistry. Am Zool 39:160–183

    CAS  Google Scholar 

  • Gibbons MJ, Griffiths CL (1986) A comparison of macrofaunal and meiofaunal distribution and standing stock across a rocky shore, with an estimate of their productivities. Mar Biol 93:181–188

    Article  Google Scholar 

  • Glynn PW (1965) Community composition, structure, and interrelationships in the marine intertidal Endocladia muricataBalanus glandula association in Monterey Bay, California. Beaufortia 12:1–198

    Google Scholar 

  • Gros P, Cochard J-C (1978) Biologie de Nyctiphanes couchii (Crustacea, Euphasiacea) dans le secteur nord du golfe de Gascogne. Ann Inst Oceanogr 54:25–46

    Google Scholar 

  • Harms J, Anger K (1989) Settlement of the barnacle Elminius modestus Darwin on test panels at Helgoland (North Sea): a ten year study. Sci Mar 53:417–421

    Google Scholar 

  • Herbert RJH, Hawkins SJ (2006) Effect of rock type on the recruitment and early mortality of the barnacle Chthamalus montagui. J Exp Mar Biol Ecol 334:96–108

    Article  Google Scholar 

  • Jenkins SR, Aberg P, Cervin G, Coleman RA, Delany J, Hawkins SJ, Hyder K, Myers AA, Paula J, Power AM, Range P, Hartnoll RG (2001) Population dynamics of the intertidal barnacle Semibalanus balanoides at three European locations: spatial scales of variability. Mar Ecol Prog Ser 217:207–217

    Article  Google Scholar 

  • Kendall MA, Bedford ML (1987) Reproduction and recruitment of the barnacle Chthamalus montagui at Aberystwyth (mid-Wales). Mar Ecol Prog Ser 38:305–308

    Article  Google Scholar 

  • Kleypas J, Buddemeier RW, Archer D, Gattuso J-P, Langdon C, Opdyke BN (1999) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284:118–120

    Article  PubMed  CAS  Google Scholar 

  • Lohse DP (1993) The effects of substratum type on the population dynamics of three common intertidal animals. J Exp Mar Biol Ecol 173:133–154

    Article  Google Scholar 

  • Magalhaes CM, Bordalo AA, Wiebe WJ (2003) Intertidal biofilms on rocky substratum can play a major role in estuarine carbon and nutrient dynamics. Mar Ecol Prog Ser 258:275–281

    Article  CAS  Google Scholar 

  • Martin S, Thouzeau G, Chauvaud L, Jean F, Guérin L (2006) Respiration, calcification, and excretion of the invasive slipper limpet, Crepidula fornicata L.: implications for carbon, carbonate, and nitrogen fluxes in affected areas. Limnol Oceanogr 51:1996–2007

    CAS  Google Scholar 

  • Medernach L, Jordana E, Grémare A, Nozais C, Charles F, Amouroux JM (2000) Population dynamics, secondary production and calcification in a Mediterranean population of Ditrupa arietina (Annelida: Polychaeta). Mar Ecol Prog Ser 199:171–184

    Article  Google Scholar 

  • Ménesguen A, Hoch T (1997) Modelling the biogeochemical cycles of elements limiting primary production in the English Channel. I. Role of thermohaline stratification. Mar Ecol Prog Ser 146:173–188

    Article  Google Scholar 

  • Migné A, Davoult D, Gattuso J-P (1998) Calcium carbonate production of a dense population of the brittle star Ophiothrix fragilis (Echinodermata: Ophiuroidea): role in the carbon cycle of a temperate coastal ecosystem. Mar Ecol Prog Ser 173:305–308

    Article  Google Scholar 

  • Milliman JD (1993) Production and accumulation of calcium carbonate in the ocean: budget of a nonsteady state. Global Biogeochem Cycles 7:927–957

    CAS  Google Scholar 

  • Moore HB (1972) An estimate of carbonate production by macrobenthos in some tropical, soft-bottom communities. Mar Biol 17:145–148

    CAS  Google Scholar 

  • O’Riordan RM, Ramsay NF (1999) The current distribution and abundance of the Australasian barnacle Elminius modestus in Portugal. J Mar Biol Ass UK 79:937–939

    Article  Google Scholar 

  • O’Riordan RM, Arenas F, Arrontes J, Castro JJ, Cruz T, Delany J, Martinez B, Fernandez C, Hawkins SJ, McGrath D, Myers AA, Oliveros J, Pannacciulli FG, Power AM, Relini G, Rico JM, Silva T (2004) Spatial variation in the recruitment of the intertidal barnacles Chthamalus montagui Southward and Chthamalus stellatus (Poli) (Crustacea: Cirripedia) over an European scale. J Exp Mar Biol Ecol 304:243–264

    Article  Google Scholar 

  • Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsasy K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner G-K, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig MF, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686

    Article  PubMed  CAS  Google Scholar 

  • Parsons TR, Takahashi M, Hargrave B (1984) Biological Oceanographic processes. Buttermorth-Heibemann, Exeter

    Google Scholar 

  • Power AM, Delany J, McGrath CC, Myers AA, O’Riordan RM (2006) Patterns of adult baundance in Chthamalus stellatus (Poli) and C. montagui (crustacea: Cirripedia) emerge during late recruitment. J Exp Mar Biol Ecol 332:151–165

    Article  Google Scholar 

  • Raffaelli D (1979) The grazer-algae interaction in the intertidal zone on New Zealand rocky shores. J Exp Mar Biol Ecol 38:81–100

    Article  Google Scholar 

  • Raimondi PT (1988) Rock type affects settlement, recruitment, and zonation of the barnacle Chthamalus anisopoma Pilsbury. J Exp Mar Biol Ecol 123:253–267

    Article  Google Scholar 

  • Riebesell U, Zondervan I, Rost B, Tortell PD, Zeebe RE, Morel FMM (2000) Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407:364–367

    Article  PubMed  CAS  Google Scholar 

  • Rodgers J (1957) The distribution of marine carbonate sediments: a review, vol 5. Soc Econ Paleontol Mineral 5[Special Publ]:2–13

  • Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng T-H, Kozyr A, Ono T, Rios AF (2004) The Oceanic sink for anthropogenic CO2. Science 305:357–371

    Article  CAS  Google Scholar 

  • Schwinghamer P, Hargrave B, Peer D, Hawkins CM (1986) Partitioning of production and respiration among size groups of organisms in an intertidal benthic community. Mar Ecol Prog Ser 31:131–142

    Article  Google Scholar 

  • Segar DA, Collins JD, Riley JP (1971) The distribution of the major and some minor elements in marine animals. Part II. Molluscs. J Mar Biol Assoc UK 51:131–136

    CAS  Google Scholar 

  • Smith SV (1972) Production of calcium carbonate on the mainland shelf of Southern California. Limnol Oceanogr 17:28–41

    CAS  Google Scholar 

  • Southward AJ (1991) Forty years of change in species composition and population density of barnacles on a rocky shore near Plymouth. J Mar Biol Assoc UK 71:495–513

    Article  Google Scholar 

  • Ware JR, Smith SV, Reaka-kudha ML (1991) Coral reefs: sources or sinks of atmospheric CO2? Coral Reefs 11:127–130

    Article  Google Scholar 

  • Wu RSS, Levings CD (1979) Energy flow and population dynamics of the barnacle Balanus glandula. Mar Biol 54:83–89

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank E. Thiebaut for fruitful discussions, T. Cariou for acquiring the temperature data, G. Schaal for help on data acquisition and N. Guyard for help on figure editing. These experiments comply with current French laws.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Golléty.

Additional information

Communicated by Martin Attrill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golléty, C., Gentil, F. & Davoult, D. Secondary production, calcification and CO2 fluxes in the cirripedes Chthamalus montagui and Elminius modestus . Oecologia 155, 133–142 (2008). https://doi.org/10.1007/s00442-007-0895-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-007-0895-8

Keywords

Navigation