Skip to main content

Advertisement

Log in

Epidemiology of a Daphnia brood parasite and its implications on host life-history traits

  • Community Ecology
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Parasites influence host life-history traits and therefore might crucially shape host populations in natural systems. In a series of laboratory experiments, we studied the impact of an oomycete brood parasite on its Daphnia (waterflea) host. We asked whether Daphnia dump the infected brood and subsequently are able to reproduce again as was occasionally observed in a preliminary study. No viable offspring developed from infected clutches, but 78% of the infected females produced healthy offspring after releasing the infected brood while molting. Neither those offsprings’ development success nor their mothers’ reproductive potential was affected by the brood parasite. However, infected Daphnia had a reduced life-span and suffered an increased susceptibility to another parasite, an unidentified bacterium. Additionally, we studied the prevalence of this brood parasite and the unidentified bacterium in a natural Daphnia assemblage in a pre-alpine lake, across changing demographic and environmental conditions. The brood parasite epidemic seemed to be host-density dependent. Our results show that the brood parasite’s impact on the host population is enhanced when combined with the unidentified bacterium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altizer S, Nunn CL, Thrall PH, Gittleman JL, Antonovics J et al (2003) Social organization and parasite risk in mammals: integrating theory and empirical studies. Annu Rev Ecol Evol Syst 34:517–547

    Article  Google Scholar 

  • Altizer S, Dobson A, Hosseini P, Hudson P, Pascual M, Rohani P (2006) Seasonality and the dynamics of infectious diseases. Ecol Lett 9:467–484

    Article  PubMed  Google Scholar 

  • Anderson RM (1978) The regulation of host population-growth by parasitic species. Parasitology 76:119–157

    PubMed  CAS  Google Scholar 

  • Anderson RM, May RM (1978) Regulation and stability of host–parasite population interactions. 1. Regulatory processes. J Anim Ecol 47:219–247

    Article  Google Scholar 

  • Anderson RM, May RM (1979) Population biology of infectious diseases.?? 1. Nature 280:361–367

    Article  PubMed  CAS  Google Scholar 

  • Arneberg P, Skorping A, Grenfell B, Read AF (1998) Host densities as determinants of abundance in parasite communities. Proc R Soc B Biol Sci 265:1283–1289

    Article  Google Scholar 

  • Bittner K (2001) Parasitismus bei Daphnia im Bodensee. Ph.D. Thesis, Universität Konstanz, Konstanz, Germany

  • Bittner K, Rothhaupt KO, Ebert D (2002) Ecological interactions of the microparasite Caullerya mesnili and its host Daphnia galeata. Limnol Oceanogr 47:300–305

    Article  Google Scholar 

  • Burns CW (1985) Fungal parasitism in a fresh-water copepod—components of the interaction between Aphanomyces and Boeckella. J Invert Pathol 46:5–10

    Article  Google Scholar 

  • Caceres CE, Hall SR, Duffy MA, Tessier AJ, Helmle C, MacIntyre S (2006) Physical structure of lakes constrains epidemics in Daphnia populations. Ecology 87:1438–1444

    Article  PubMed  CAS  Google Scholar 

  • Duffy MA, Hall SR, Tessier AJ, Huebner M (2005) Selective predators and their parasitized prey: are epidemics in zooplankton under top-down control? Limnol Oceanogr 50:412–420

    Article  Google Scholar 

  • Ebert D (1995) The ecological interactions between a microsporidian parasite and its host Daphnia magna. J Anim Ecol 64:361–369

    Article  Google Scholar 

  • Ebert D (2005) Ecology, epidemiology, and evolution of parasitism in Daphnia. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information. Available from??: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Books

  • Ebert D, Lipsitch M, Mangin KL (2000a) The effect of parasites on host population density and extinction: experimental epidemiology with Daphnia and six microparasites. Am Nat 156:459–477

    Article  Google Scholar 

  • Ebert D, Zschokke Rohringer CD, Carius HJ (2000b) Dose effects and density-dependent regulation of two microparasites of Daphnia magna. Oecologia 122:200–209

    Article  Google Scholar 

  • Goudet J (2002) FSTAT (version 2.9.3.2), a program for IBM PC compatibles to calculate Weir and Cockerham’s (1984) estimators of F-statistics. Institut de Zoologie et Ecologie Animale, Université Lausanne, Lausanne

  • Green J (1974) Parasites and epibionts of Cladocerans. Trans Zool Soc Lond 32:417–515

    Article  Google Scholar 

  • Hall SR, Tessier AJ, Duffy MA, Huebner M, Caceres CE (2006) Warmer does not have to mean sicker: temperature and predators can jointly drive timing of epidemics. Ecology 87:1684–1695

    Article  PubMed  Google Scholar 

  • Hudson PJ, Dobson AP, Newborn D (1998) Prevention of population cycles by parasite removal. Science 282:2256–2258

    Article  PubMed  CAS  Google Scholar 

  • Hudson PJ, Dobson AP, Lafferty KD (2006) Is a healthy ecosystem one that is rich in parasites? Trends Ecol Evol 21:381–385

    Article  PubMed  Google Scholar 

  • Johnson PTJ, Chase JM (2004) Parasites in the food web: linking amphibian malformations and aquatic eutrophication. Ecol Lett 7:521–526

    Article  Google Scholar 

  • Kamoun S (2003) Molecular genetics of pathogenic Oomycetes. Eukaryot Cell 2:191–199

    Article  PubMed  CAS  Google Scholar 

  • Keller B, Spaak P (2004) Nonrandom sexual reproduction and diapausing egg production in a Daphnia hybrid species complex. Limnol Oceanogr 49:1393–1400

    Article  Google Scholar 

  • Keller B, Bürgi HR, Sturm M, Spaak P (2002) Ephippia and Daphnia abundances under changing trophic conditions. Verh Int Verein Theor Angew Limnol 28:851–855

    Google Scholar 

  • Lafferty KD, Kuris AM (1999) How environmental stress affects the impacts of parasites. Limnol Oceanogr 44:925–931

    Article  Google Scholar 

  • Lampert W (1993) Ultimate causes of diel vertical migration of zooplankton: new evidence for the predator avoidance hypothesis. Arch Hydrobiol Beih Ergebn Limnol 39:79–88

    Google Scholar 

  • Lampert W, Sommer U (1999) Limnoökologie, 2nd edn. Georg Thieme Verlag, Stuttgart

    Google Scholar 

  • Lass S, Ebert D (2006) Apparent seasonality of parasite dynamics: analysis of cyclic prevalence patterns. Proc R Soc B Biol Sci 273:199–206

    Article  Google Scholar 

  • Little TJ, Ebert D (1999) Associations between parasitism and host genotype in natural populations of Daphnia (Crustacea: Cladocera). J Anim Ecol 68:134–149

    Article  Google Scholar 

  • Marcogliese D (2002) Food webs and the transmission of parasites to marine fish. Parasitology 124:83–99

    Article  Google Scholar 

  • Morand S, Poulin R (1998) Density, body mass and parasite species richness of terrestrial mammals. Evol Ecol 12:717–727

    Article  Google Scholar 

  • Morand S, Cribb TH, Kulbicki M et al (2000) Endoparasite species richness of New Caledonian butterfly fishes: host density and diet matter. Parasitology 121:65–73

    Article  PubMed  Google Scholar 

  • Mouritsen KN, Jensen KT (1997) Parasite transmission between soft-bottom invertebrates: temperature mediated infection rates and mortality in Corophium volutator. Mar Ecol Prog Ser 151:123–134

    Article  Google Scholar 

  • Pulkkinen K, Ebert D (2006) Persistence of host and parasite populations subject to experimental size-selective removal. Oecologia 149:72–80

    Article  PubMed  Google Scholar 

  • Sheldon BC, Verhulst S (1996) Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol Evol 11:317–321

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. W.H. Freeman, San Francisco

    Google Scholar 

  • Stazi AV, Mantovani A, Fuglieni F, Didelupis GLD (1994) Observations on fungal infection of the ovary of laboratory-cultured Daphnia magna. Bull Environ Contam Toxicol 53(N5):699–703

    Article  PubMed  CAS  Google Scholar 

  • Stirnadel HA, Ebert D (1997) Prevalence, host specificity and impact on host fecundity of microparasites and epibionts in three sympatric Daphnia species. J Anim Ecol 66:212–222

    Article  Google Scholar 

  • Willey RL, Willey RB (1993) Planktivore effects on zooplankton epibiont communities—epibiont pigmentation effects. Limnol Oceanogr 38:1818–1822

    Article  Google Scholar 

  • Wolinska J, Keller B, Bittner K, Lass S, Spaak P (2004) Do parasites lower Daphnia hybrid fitness? Limnol Oceanogr 49:1401–1407

    Article  Google Scholar 

  • Wolinska J, Keller B, Manca M, Spaak P (2007) Parasite survey of a Daphnia hybrid complex: host-specificity and environment determine infection. J Anim Ecol 76:191–200

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Wolf Mooij and two anonymous reviewers for their helpful comments. We thank Barbara Keller and Christian Rellstab for valuable comments and critical remarks on an earlier version of this paper, Jukka Jokela for statistical advice, and Chris Robinson, Andrew Parks, and Megan Greischar for linguistic help. This study complies with the current laws of Switzerland, where it was performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Tellenbach.

Additional information

Communicated by Wolf Mooij.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tellenbach, C., Wolinska, J. & Spaak, P. Epidemiology of a Daphnia brood parasite and its implications on host life-history traits. Oecologia 154, 369–375 (2007). https://doi.org/10.1007/s00442-007-0826-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-007-0826-8

Keywords

Navigation