Abstract
Converting deciduous forests to coniferous plantations and vice versa causes environmental changes, but till now insight into the overall effect is lacking. This review, based on 38 case studies, aims to find out how coniferous and deciduous forests differ in terms of throughfall (+stemflow) deposition and seepage flux to groundwater. From the comparison of coniferous and deciduous stands at comparable sites, it can be inferred that deciduous forests receive less N and S via throughfall (+stemflow) deposition on the forest floor. In regions with relatively low open field deposition of atmospheric N (<10 kg N ha−1 year−1), lower NH +4 mean throughfall (+stemflow) deposition was, however, reported under conifers compared to deciduous forest, while in regions with high atmospheric N pollution (>10 kg N ha−1 year−1), the opposite could be concluded. The higher the open field deposition of NH +4 , the bigger the difference between the coniferous and deciduous throughfall (+stemflow) deposition. Furthermore, it can be concluded that canopy exchange of K+, Ca2+ and Mg2+ is on average higher in deciduous stands. The significantly higher stand deposition flux of N and S in coniferous forests is reflected in a higher soil seepage flux of NO −3 , SO 2−4 , K+, Ca2+, Mg2+ and Al(III). Considering a subset of papers for which all necessary data were available, a close relationship between throughfall (+stemflow) deposition and seepage was found for N, irrespective of the forest type, while this was not the case for S. This review shows that the higher input flux of N and S in coniferous forests clearly involves a higher seepage of NO −3 and SO 2−4 and accompanying cations K+, Ca2+, Mg2+ and Al(III) into the groundwater, making this forest type more vulnerable to acidification and eutrophication compared to the deciduous forest type.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Aber JD, Nadelhoffer KJ, Steudler P, Melillo JM (1989) Nitrogen saturation in Northern forest ecosystems. Bioscience 39:378–386
Ågren GI, Bosatta E (1988) Nitrogen saturation of the terrestrial ecosystem. Environ Pollut 54:185–197
Alcock MR, Morton J (1985) Nutrient content of throughfall and stemflow in woodland recently established on heathland. J Ecol 73:625–632
Augusto L, Ranger J, Binkley D, Rothe A (2002) Impact of several tree species of European temperate forests on soil fertility. Ann For Sci 59:233–253
Bergkvist B, Folkeson L (1995) The influence of tree species on acid deposition, proton budgets and element fluxes in south Swedish forest ecosystems. Ecol Bull 44:90–99
Binkley D (1996) The influence of tree species on forest soils: processes and patterns. In: Mead DJ, Cornforth IS (eds) Proceedings of the trees and soil workshop, 1994. Agronomical Society of New Zealand, special publication no. 10. Lincoln University Press, Canterbury, pp 1–33
Bleeker A, Draaijers G, van der Veen D, Erisman JW, Möls H, Fonteijn P, Geusebroek M (2003) Field intercomparison of throughfall measurements performed within the framework of the Pan European Intensive Monitoring Program of EU/ICP Forest. Environ Pollut 125:123–138
Borken W, Xu YJ, Beese F (2004) Ammonium, nitrate and dissolved organic nitrogen in seepage water as affected by compost amendment to European beech, Norway spruce and Scots pine forests. Plant Soil 258:121–134
Boumans LJM, Fraters D, Van Drecht G (2004) Nitrate leaching in agriculture to upper groundwater in the sandy regions of the Netherlands during the 1992–1995 period. Environ Monit Assess 102:225–241
Bowden RD, Geballe GT, Bowden WB (1989) Foliar uptake of 15N from simulated cloud water by red spruce (Picea rubens) seedlings. Can J For Res 19:382–386
Boyce RL, Friedland AJ, Chamberlain CP, Poulson SR (1996) Direct canopy nitrogen uptake from 15N-labeled wet deposition by mature red spruce. Can J For Res 26:1539–1547
Bustamante RO, Simonetti JA (2005) Is Pinus radiata invading the native vegetation in central Chile? Demographic responses in a fragmented forest. Biol Invasions 7:243–249
Cairns MA, Lajtha K (2005) Effect of succession on nitrogen export in the West-Central Cascades, Oregon. Ecosystems 8:583–601
Cappellato R, Peters NE, Ragsdale HL (1993) Acidic atmospheric deposition and canopy interactions of adjacent deciduous and coniferous forests in the Georgia Piedmont. Can J For Res 23:1114–1124
Cole DW, Rapp M (1981) Elemental cycling in forest ecosystems. In: Reichle DE (Ed) Dynamic properties of forest ecosystems. Cambridge University Press, Cambridge, pp 341–410
Dambrine E, Probst A, Viville D, Biron P, Paces T, Novak M, Buzek T, Cerny J, Groscheova H (2000) Spatial variability and long-term trends in mass balance of nitrogen and sulphur in central European forested catchments. In: Schulze ED (Eds) Carbon and nitrogen cycling in European forest ecosystems. Ecological studies 142. Springer, Heidelberg, pp 405–418
De Schrijver A, Nachtergale L, Staelens J, Luyssaert S, De Keersmaeker L (2004) Comparison of throughfall and soil solution chemistry between a high-density Corsican pine stand and a naturally regenerated silver birch stand. Environ Pollut 131:93–105
de Vries W, Reinds GJ, Vel E (2003) Intensive monitoring of forest ecosystems in Europe 2: atmospheric deposition and its impact on soil solution chemistry. For Ecol Manage 174:97–115
Draaijers GPJ (1993) The variability of atmospheric deposition to forests. PhD thesis. University of Utrecht, Utrecht
Draaijers GPJ, Erisman JW, Van Leeuwen NFM, Romer FG, te Winkel BH, Veltkamp AC, Vermeulen AT, Wyers GP (1997) The impact of canopy exchange on differences observed between atmospheric deposition and throughfall fluxes. Atmos Environ 31:387–397
Durand P, Neal C, Lelong F, Didon-Lescot J-F (1992) Effects of land-use and atmospheric input on stream and soil chemistry: field results and long-term simulation at Mont-Lozere (Cevennes National Park, Southern France). Sci Total Environ 119:191–209
Erisman JW, Draaijers G (2003) Deposition to forests in Europe: most important factors influencing dry deposition and models used for generalisation. Environ Pollut 124:379–388
Fichter J, Dambrine E, Turpault MP, Ranger J (1998) Base cation supply in spruce and beech ecosystems of the Strengbach catchment (Vosges Mountains, N-E France). Water Air Soil Pollut 104:125–148
Garten CT, Hanson PJ (1990) Foliar retention of 15N-nitrate and 15N-ammonium by red maple (Acer rubrum) and white oak (Quercus alba) leaves from simulated rain. Environ Exp Bot 30:333–342
Gartner S, Reif A (2004) The impact of forest transformation on stand structure and ground vegetation in the southern Black Forest, Germany. Plant Soil 264:35–51
Gundersen P, Callesen I, de Vries W (1998) Nitrate leaching in forest ecosystems is related to forest floor C/N ratios. Environ Pollut 102:403–407
Gundersen P, Schmidt IK, Raulund-Rasmussen K (2006) Leaching of nitrate from temperate forests—effects of air pollution and forest management. Environ Rev 14:1–57
Gurevitch J, Curtis PS, Jones MH (2001) Meta-analysis in ecology. Adv Ecol Res 32:199–247
Harrison AF, Johnson DW (1992) Inorganic sulfate dynamics. In: Johnson DW, Lindberg SE (eds) Atmospheric deposition and forest nutrient cycling. A synthesis of the integrated forest study. Ecological studies 91. Springer, Berlin, pp 104–118
Heinrichs H, Mayer R (1977) Distribution and cycling of major and trace elements in two Central European forest ecosystems. J Environ Qual 6:402–407
Hermann M., Pust J, Pott R (2006) The chemical composition of throughfall beneath oak, birch and pine canopies in Northwest Germany. Plant Ecol 154:273–285
Houle D, Ouimet R, Paquin R, Laflamme JG (1999) Determination of sample size for estimating ion throughfall deposition under a mixed hardwood forest at the Lake Clair Watershed (Duchesnay, Quebec). Can J For Res 29:1935–1943
Howard PJA, Howard DM (1990) Titrable acids and bases in tree and shrub leaf litters. Forestry 63:178–196
Johansson MB (1995) The chemical composition of needle and leaf litter from Scots pine, Norway spruce and white birch in Scandinavian forests. Forestry 68:49–62
Johnson DW (1992) Base cation distribution and cycling. In: Johnson DW, Lindberg SE (eds) Atmospheric deposition and forest nutrient cycling. A synthesis of the Integrated Forest Study. Ecological studies 91. Springer, Berlin, pp 275–340
Jussy JH, Colin-Belgrand M, Dambrine E, Ranger J, Zeller B, Bienaimé S (2004) N deposition, N transformation and N leaching in acid forest soils. Biogeochemistry 69:241–262
Knoke T, Stimm B, Ammer C, Moog M (2005) Mixed forests reconsidered: A forest economics contribution on an ecological concept. For Ecol Manage 213:102–116
Kristensen HL, Gundersen P, Callesen I, Reinds GJ (2004) Throughfall nitrogen deposition has different impacts on soil solution nitrate concentration in European coniferous and deciduous forests. Ecosystems 7:180–192
Künstle E, Mitscherlich G, Rönicke G (1981) Investigations in the concentration and quantity of sulfur, chloride, potassium and calcium as well as hydrogen-ion in the precipitation in the open and in the throughfall of deciduous and coniferous stands near Freiburg i. Br. Allg Forst Jagdzeit 152:147–165
Lochman V, Sebkova V (1998) The development of air pollutant depositions and soil chemistry on the research plots in the eastern part of the Ore Mts. Lesnictvi For 44:549–560
Lochman V, Mares V, Fadrhonsova V (2004) Development of air pollutant deposition, soil water chemistry and soil on Šerlich research plots, and water chemistry in a surface water source. J For Sci 50:263–283
Lovett GM, Schaefer DA (1992) Canopy interactions of Ca2+, Mg2+, and K+. In: Johnson DW, Lindberg SE (eds) Atmospheric deposition and forest nutrient cycling. A synthesis of the integrated forest study. Ecological studies 91. Springer, Heidelberg, pp 253–275
Lovett GM, Reiners WA, Olson RK (1989) Factors controlling throughfall chemistry in a balsam fir canopy—a modelling approach. Biogeochemistry 8:239–264
Macdonald JA, Dise NB, Matzner NB, Armbruster M, Gundersen P, Forsius M (2002) Nitrogen input together with ecosystem nitrogen enrichment predict nitrate leaching from European forests. Glob Chang Biol 8:1028–1033
Martinson L, Lamersdorf N, Warfvinge P (2005) The Solling roof revisited—slow recovery from acidification observed and modeled despite a decade of “clean-rain” treatment. Environ Pollut 135:293–302
Matson P, Lohse KA, Hall SJ (2002) The globalization of nitrogen deposition: consequences for terrestrial ecosystems. Ambio 31:113–119
Matzner E, Meiwes KJ (1994) Long-term development of element fluxes with bulk precipitation and throughfall in two German forests. J Environ Qual 23:162–166
McDowell WH, Magill AH, Aitkenhead-Peterson JA, Aber JD, Merriam JL, Kaushal SS (2004) Effects of chronic nitrogen amendment on dissolved organic matter and inorganic nitrogen in soil solution. For Ecol Manage 196:29–41
Neary AJ, Gizyn WI (1994) Throughfall and stemflow chemistry under deciduous coniferous forest canopies in South-central Ontario. Can J For Res 24:1089–1100
Nihlgard (1970) Precipitation, its chemical composition and effect on soil water in a beech and a spruce forest in south Sweden. Oikos 21:208–217
Pucket (1990) Estimates of ion sources in deciduous and coniferous throughfall. Atmos Environ 24:545–555
Ranger J, Nys C (1994) The effect of spruce (Picea abies Karst) on soil development: an analytical and experimental approach. Eur J Soil Sci 45:193–204
Reich PB, Oleksyn J, Modrzynski J, Mrozinski P, Hobbie SE, Eissenstat DM, Chorover J, Chadwick OA, Hale CM, Tjoelker MG (2005) Linking litter calcium, earthworms and soil properties: a common garden test with 14 tree species. Ecol Lett 8:811–818
Rothe A, Huber C, Kreutzer K, Weis W (2002) Deposition and soil leaching in stands of Norway spruce and European Beech: results from the Höglwald research in comparison with other European case studies. Plant Soil 240:33–45
Saetre P (1998) Decomposition, microbial community structure, and earthworm effects along a birch-spruce soil gradient. Ecology 79:834–846
Schulze ED, Gebauer G (1989) Aufnahme, Abgabe und Umsatz von Stickoxiden, NH +4 und NO −3 bei Waldbäumen, ins besondere der Fichte. In: Reuther M, Kirchner M (eds) Statusseminar der PBWU zum Forschungsschwerpunkt “Waldschäden”. GSF-Bericht 6/89. Forschungszentrum für Umwelt und Gesundheit,Neuherberg, pp 119–133
Shibata H, Sakuma T (1996) Canopy modification of precipitation chemistry in deciduous and coniferous forests affected by acidic deposition. Soil Sci Plant Nutr 42:1–10
Silva RG, Holub SM, Jorgensen EE, Ashanuzzaman ANM (2005) Indicators of nitrate leaching loss under different land use of clayey and sandy soils in southeastern Oklahoma. Agric Ecosyst Environ 109:346–359
Singer A, Ganor E, Fried M, Shamay Y. (1996) Throughfall deposition of sulphur to a mixed oak and pine forest in Israël. Atmos Environ 30:3881–3889
Smith W (1981) Air pollution and forests: interactions between air contaminants and forest ecosystems. Springer, Heidelberg, p 397
Spiecker H, Hansen J, Hasenauer H, Klimo E, Skovsgaard JP, Sterba H, von Teuffel K (eds) (2004) Norway spruce conversion—options and consequences. European Forest Institute research report 18. Koninklijke Brill, Leiden
Stachurski A, Zimka JR (2000) Atmospheric input of elements to forest ecosystems: a method of estimation using artificial foliage placed above rain collectors. Environ Pollut 110:345–356
Ulrich B (1983) A concept of forest ecosystem stability and acid deposition as a driving force for destabilization. In: Ulrich B, Pankrath J (eds) Effects of accumulation of air pollutants in forest ecosystems. Kluwer, Dordrecht, pp 1–29
Van Ek R, Draaijers GPJ (1994) Estimates of atmospheric deposition and canopy exchange for three common tree species in the Netherlands. Water Air Soil Pollut 73:61–82
Von Lüpke B, Ammer C, Bruciamacchie M, Brunner A, Ceitel J, Collet C, Deuleuze C, Di Placido J, Huss J, Jankovic J, Kantor P, Larsen BJ, Lexer M, Löff M, Lonauer R, Madsen PK, Modrzynski J, Mosandl R, Pampe A, Pommerening A, Stefancik I, Tesar V, Thompson R, Zientarski J (2004) Silvicultural strategies for conversion. In: Spiecker H, Hansen J, Klimo E, Skofsgaard JP, Sterba H, Von Teuffel K (eds) Norway spruce conversion—options and consequences. European Forest Institute research report 18. Koninklijke Brill, Leiden, pp 121–164
von Wilpert K, Zirlewagen D, Kohler M (2000) To what extent can silviculture enhance sustainability of forest sites under the immission regime in Central Europe? Water Air Soil Pollut 122:105–120
Weathers KC, Cadenasso ML, Picket STA (2001) Forest edges as nutrient and pollutant concentrations: Potential synergisms between fragmentation, forest canopies and the atmosphere. Conserv Biol 15:1506–1514
Wesselink LG, Meiwes KJ, Matzner E, Stein A (1995) Long-term changes in water and soil chemistry in spruce and beech forests, Solling, Germany. Environ Sci Technol 29:51–58
Acknowledgements
The fourth author was granted a postdoctoral fellowship of the Research Foundation Flanders (FWO). This paper is connected to the activities of the EFI Project Centre CONFOREST.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Hermann Heilmeier.
Rights and permissions
About this article
Cite this article
De Schrijver, A., Geudens, G., Augusto, L. et al. The effect of forest type on throughfall deposition and seepage flux: a review. Oecologia 153, 663–674 (2007). https://doi.org/10.1007/s00442-007-0776-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00442-007-0776-1