Skip to main content

Advertisement

Log in

Variation in multiple traits of vegetative and reproductive seagrass tissues influences plant–herbivore interactions

  • Plant Animal Interactions
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Plant–herbivore interactions have strong ecological and evolutionary consequences, but have been traditionally overlooked in marine higher plants. Despite recent advances in seagrass ecology that highlight the importance of herbivory, the mechanisms that regulate the feeding behaviour of seagrass consumers remain largely unknown. Herbivores have been shown to reduce the sexual reproductive success of seagrasses through direct consumption of inflorescences and seeds, but we know little about intraspecific variation in susceptibility to grazing of different seagrass tissues. We contrasted the relative palatability of reproductive and vegetative tissues of the temperate seagrass Posidonia oceanica in the field, and we assessed the feeding preferences among these tissues of the main consumers of the plant, the fish Sarpa salpa and the urchin Paracentrotus lividus. Moreover, we identified the plant traits that explained the observed feeding behaviour. We provide strong evidence for herbivore selectivity among seagrass tissues. In the field, 70–90% of inflorescences were damaged by herbivores compared to 3–60% of leaves of similar age. In feeding assays, the urchin P. lividus showed over a twofold preference for reproductive tissue at various stages of development. By contrast, we detected no feeding activity on either leaves or inflorescences from the fish S. salpa, which is known to migrate to deeper waters soon after flowering starts and during the period of fruit maturation. Despite being the preferred food of urchins, inflorescences were chemically defended, had higher levels of phenolics and lower nutrient and calorific content than leaves. We experimentally demonstrated that leaf structural defences are the primary factor in determining urchin feeding preferences. Removal of plant structure results in a drastic shift in urchin selectivity towards the most nutritious and less chemically defended leaf tissue, indicating that multiple mechanisms of defence to herbivory may coexist in seagrasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agostini S, Desjobert JGP (1998) Distribution of phenolic compounds in the seagrass Posidonia oceanica. Phytochemistry 48:611–617

    Article  CAS  Google Scholar 

  • Ang PO, Dewreede RE (1990) Matrix models for algal life-history stages. Mar Ecol Prog Ser 59:171–181

    Google Scholar 

  • Balestri E (2004) Flowering of the seagrass Posidonia oceanica in a north-western Mediterranean coastal area: temporal and spatial variations. Mar Biol 145:61–68

    Article  Google Scholar 

  • Balestri E, Cinelli F (2003) Sexual reproductive success in Posidonia oceanica. Aquat Bot 75:21–32

    Article  Google Scholar 

  • Becerro MA, Goetz G, Paul VJ, Scheuer PJ (2001) Chemical defenses of the sacoglossan mollusk Elysia rufescens and its host alga Bryopsis sp. J Chem Ecol 27:2287–2299

    Article  PubMed  CAS  Google Scholar 

  • Behmer ST, Simpson SJ, Raubenheimer D (2002) Herbivore foraging in chemically heterogeneous environments: nutrients and secondary metabolites. Ecology 83:2489–2501

    Article  Google Scholar 

  • Boege K, Marquis RJ (2005) Facing herbivory as you grow up: the ontogeny of resistance in plants. Trends Ecol Evol 20:441–448

    Article  PubMed  Google Scholar 

  • Bolser R, Hay M, Lindquist N, Fenical W, Wilson D (1998) Chemical defenses of freshwater macrophytes against crayfish herbivory. J Chem Ecol 24:1639–1658

    Article  CAS  Google Scholar 

  • Boudouresque CF, Meinesz A (1982) Découverte de l’herbier de Posidonies. In. Parc National de Port-Cros, Hyères

  • Boudouresque C, Verlaque M (2001) Ecology of Paracentrotus lividus. In: Lawrence JM (eds) Edible sea urchins: biology and ecology. Elsevier, London, pp 177–216

  • Boudouresque C, Meinesz A, Fresi E, Gravez V (1989) In: International workshop on Posidonia beds. GIS Posidonie, Marseille

  • Brenes-Arguedas T, Coley PD (2005) Phenotypic variation and spatial structure of secondary chemistry in a natural population of a tropical tree species. Oikos 108:410–420

    Article  Google Scholar 

  • Bryant JP, Provenza FD, Pastor J, Reichardt PB, Clausen TP, Dutoit JT (1991) Interactions between woody-plants and browsing mammals mediated by secondary metabolites. Annu Rev Ecol Syst 22:431–446

    Article  Google Scholar 

  • Buia MC, Mazzella L (1991) Reproductive phenology of the Mediterranean seagrasses Posidonia oceanica Nl) Delile, Cymodocea nodosa (Ucria) Aschers, and Zostera noltii Hornem. Aquat Bot 40:343–362

    Article  Google Scholar 

  • Cariello L, Zanetti L (1979) Distribution of chicoric acid during leaf development of Posidonia oceanica. Bot Mar 22:359–360

    CAS  Google Scholar 

  • Coley P (1983) Herbivory and defensive characteristics of tree species in a lowland tropical forest. Ecol Monogr 53:209–233

    Article  Google Scholar 

  • Coley PD, Barone JA (1996) Herbivory and plant defenses in tropical forests. Annu Rev Ecol Syst 27:305–335

    Article  Google Scholar 

  • Cronin G, Hay M (1996) Susceptibility to herbivores depends on recent history of both the plant and the animal. Ecology 77:1531–1543

    Article  Google Scholar 

  • Cronin G, et al (2002) Crayfish feeding preferences for fresh water macrophytes: the influence of plant structure and chemistry. J Crustac Biol 22:708–718

    Article  Google Scholar 

  • Cuny P, Serve L, Jupin H, Boudouresque CF (1995) Water soluble phenolic compounds of the marine phanerogam Posidonia oceanica in a Mediterranean area colonised by the introduced chlorophyte Caulerpa taxifolia. Aquat Bot 52:237–242

    Article  CAS  Google Scholar 

  • Diaz-Almela E, Marbà N, Álvarez E, Balestri E, Ruiz-Fernández J, Duarte C (2006) Patterns of seagrass (Posidonia oceanica) flowering in the Western Mediterranean. Mar Biol 148–4, 723–742

  • Duarte C, Sand-Jensen K (1990) Seagrass colonization: patch formation and patch growth in Cymodocea nodosa. Mar Ecol Prog Ser 65:193–200

    Google Scholar 

  • Duffy JE, Hay ME (1990) Seaweed adaptations to herbivory—chemical, structural, and morphological defenses are often adjusted to spatial or temporal patterns of attack. Bioscience 40:368–375

    Article  Google Scholar 

  • Engel C, Aberg P, Gaggiotti OE, Destombe C, Valero M (2001) Population dynamics and stage structure in a haploid–diploid red seaweed, Gracilaria gracilis. J Ecol 89:436–450

    Article  Google Scholar 

  • Feeny P (1976) Plant apparency and chemical defense. Recent Adv Phytochem 10:1–40

    CAS  Google Scholar 

  • Fishman J, Orth R (1996) Effects of predation on Zostera marina L. seed abundance. J Exp Mar Biol Ecol 198:11–26

    Article  Google Scholar 

  • Francour P (1997) Fish assemblages of Posidonia oceanica beds at Port-Cros (France, NW Mediterranean): assessment of composition and long-term fluctuations by visual census. Mar Ecol Prog Ser 18:157–173

    Google Scholar 

  • Fritz R, Simms E (1992) Plant resistance to herbivores and pathogens: ecology, evolution and genetics. University of Chicago Press, Chicago

    Google Scholar 

  • Goecker M, Heck K, Valentine J (2005) Effects of nitrogen concentrations in turtlegrass Thalassia testudinum on consumption by the bucktooth parrotfish Sparisoma radians. Mar Ecol Prog Ser 286:239–248

    Google Scholar 

  • Harborne J (1983) Introduction to ecological biochemistry. London Academic London

    Google Scholar 

  • Harrison P (1982) Control of microbial growth and of amphipod grazing by water soluble compounds from leaves of Zostera marina. Mar Biol 67:225–230

    Article  Google Scholar 

  • Hay M, Fenical W (1988) Marine plant–herbivore interactions—the ecology of chemical defense. Annu Rev Ecol Syst 19:111–145

    Article  Google Scholar 

  • Hay M, Kappel Q, Fenical W (1994) Synergisms in plant defenses against herbivores—interactions of chemistry, calcification, and plant quality. Ecology 75:1714–1726

    Article  Google Scholar 

  • Heck K, Valentine J (2006) Plant–Herbivore interactions in seagrass meadows. J Exp Mar Biol Ecol 330:1, 420–436

    Google Scholar 

  • Hemminga M, Duarte C (2000) Seagrass ecology. Cambridge University Press, London

    Google Scholar 

  • Holbrook S, Reed D, Hansen K, Blanchette C (2000) Spatial and temporal patterns of predation on seeds of the surfgrass Phyllospadix torreyi. Mar Biol 136:739–747

    Article  Google Scholar 

  • Hyvarinen M, Koopmann R, Hormi O, Tuomi J (2000) Phenols in reproductive and somatic structures of lichens: a case of optimal defence? Oikos 91:371–375

    Article  CAS  Google Scholar 

  • Jackson JBC, et al (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–638

    Article  PubMed  CAS  Google Scholar 

  • Karban R, Baldwin IT (1997) Induced responses to herbivory. The University of Chicago Press, Chicago

    Google Scholar 

  • Lawrence J (1975) On the relationships between marine plants and sea urchins. Oceanogr Mar Biol Annu Rev 13:213–286

    Google Scholar 

  • Lubchenco J, Gaines SD (1981) A unified approach to marine plant–herbivore interactions 1. Populations and communities. Annu Rev Ecol Syst 12:405–437

    Article  Google Scholar 

  • Macpherson E, Gordoa A, Garcia-Rubies A (2002) Biomass size spectra in littoral fishes in protected and unprotected areas in the NW Mediterranean. Estuar Coast Shelf Sci 55:777–788

    Article  Google Scholar 

  • Marbà N, Duarte C, Cebrian J, Gallegos M, Olesen B, Sand-Jensen K (1996) Growth and population dynamics of Posidonia oceanica on the Spanish Mediterranean coast: elucidating seagrass decline. Mar Ecol Prog Ser 137:203–213

    Google Scholar 

  • Mateo MA, Romero J, Perez M, Littler MM, Littler DS (1997) Dynamics of millenary organic deposits resulting from the growth of the Mediterranean seagrass Posidonia oceanica. Estuar Coast Shelf Sci 44:103–110

    Article  Google Scholar 

  • McKey D (1979) The distribution of secondary compounds within plants. In: Rosenthal GA, Janzen DH (eds) Herbivores: their interactions with secondary plant metabolites. Academic, New York, pp 55–133

    Google Scholar 

  • McMillan C (1984) The condensed tannins (Proanthocyanidins) in seagrasses. Aquat Bot 20:351–357

    Article  CAS  Google Scholar 

  • Moore BD, Foley WJ (2005) Tree use by koalas in a chemically complex landscape. Nature 435:488–490

    Article  PubMed  CAS  Google Scholar 

  • Moran KL, Bjorndal KA (2005) Simulated green turtle grazing affects structure and productivity of seagrass pastures. Mar Ecol Prog Ser 305:235–247

    Google Scholar 

  • Nakaoka M (2002) Predation on seeds of seagrasses Zostera marina and Zostera caulescens by a tanaid crustacean Zeuxo sp. Aquat Bot 72:99–106

    Article  Google Scholar 

  • Ohnmeiss TE, Baldwin IT (2000) Optimal Defense theory predicts the ontogeny of an induced nicotine defense. Ecology 81:1765–1783

    Article  Google Scholar 

  • Olesen B, Marba N, Duarte C, Savela R, Fortes M (2004) Recolonization dynamics in a mixed seagrass meadow: the role of clonal versus sexual processes. Estuaries 27:770–780

    Article  Google Scholar 

  • Orians C (2005) Herbivores, vascular pathways, and systemic induction: facts and artifacts. J Chem Ecol 31:2231–2242

    Article  PubMed  CAS  Google Scholar 

  • Orth R, Heck K, Tunbridge D (2002) Predation on seeds of the seagrass Posidonia australis in Western Australia. Mar Ecol Prog Ser 244:81–88

    Google Scholar 

  • Pavia H, Toth GB, Aberg P (2002) Optimal defense theory: elasticity analysis as a tool to predict intraplant variation in defenses. Ecology 83:891–897

    Article  Google Scholar 

  • Pennings SC, Paul VJ (1992) Effect of plant toughness, calcification, and chemistry on herbivory by Dolabella auricularia. Ecology 73:1606–1619

    Article  Google Scholar 

  • Pennings SC, Carefoot TH, Siska EL, Chase ME, Page TA (1998) Feeding preferences of a generalist salt-marsh crab: relative importance of multiple plant traits. Ecology 79:1968–1979

    Article  Google Scholar 

  • Piazzi L, Balestri E, Cinelli F (2000) Grazing of inflorescences of the seagrass Posidonia oceanica (L.) Delile. Bot Mar 43:581–584

    Article  Google Scholar 

  • Pillans R, Franklin C, Tibbetts I (2004) Food choice in Siganus fuscescens: influence of macrophyte nutrient content and availability. J Fish Biol 64:297–309

    Article  Google Scholar 

  • Poore AGB (1994) Selective herbivory by amphipods inhabiting the brown alga Zonaria angustata. Mar Ecol Prog Ser 107:113–123

    Google Scholar 

  • Prado P, Tomas F, Alcoverro T, Romero J (2006) New evidence of the importance of herbivory on seagrass food webs: extensive direct measurements of Posidonia oceanica consumption in continental meadows. Mar Ecol Prog Ser (in review)

  • Prusak AC, O’Neal J, Kubanek J (2005) Prevalence of chemical defenses among freshwater plants. J Chem Ecol 31:1145–1160

    Article  PubMed  CAS  Google Scholar 

  • Ravn H, et al (1994) Seasonal-variation and distribution of 2 phenolic compounds, rosmarinic acid and caffeic acid, in leaves and roots-rhizomes of eelgrass (Zostera marina L.). Ophelia 40:51–61

    Google Scholar 

  • Rhoades DF (1979) Evolution of plant chemical defense against herbivores. In: Rosenthal GA, Janzen DH (eds) Herbivores: their interactions with secondary plant metabolites. Academic, New York, pp 3–54

    Google Scholar 

  • Romero J (1985) Seasonal pattern of Posidonia oceanica production: growth, age and renewal of leaves. In: International workshop on Posidonia beds. GIS Posidonie Ed. Marseille, pp 63–38

  • Sagers CL, Coley PD (1995) Benefits and costs of defense in a neotropical shrub. Ecology 76:1835–1843

    Article  Google Scholar 

  • Silvertown J, Franco M, Pisanty I, Mendoza A (1993) Comparative plant demography—relative importance of life-cycle components to the finite rate of increase in woody and herbaceous perennials. J Ecol 81:465–476

    Article  Google Scholar 

  • Simpson SJ, Raubenheimer D (1999) Assuaging nutritional complexity: a geometrical approach. Proc Nutr Soc 58:779–789

    PubMed  CAS  Google Scholar 

  • Sotka EE, Hay ME (2002) Geographic variation among herbivore populations in tolerance for a chemically rich seaweed. Ecology 83:2721–2735

    Article  Google Scholar 

  • Stamp N (2003) Theory of plant defensive level: example of process and pitfalls in development of ecological theory. Oikos 102:672–678

    Article  Google Scholar 

  • Steinberg P (1984) Algal chemical defense against herbivores: allocation of phenolic compounds in the kelp Alaria marginata. Science 223

  • Stolter C, Ball JP, Julkunen-Tiitto R, Lieberei R, Ganzhorn JU (2005) Winter browsing of moose on two different willow species: food selection in relation to plant chemistry and plant response. Can J Zool (Revue Canadienne De Zoologie) 83:807–819

    Article  CAS  Google Scholar 

  • Swain T (1977) Secondary compounds as protective agents. Annu Rev Plant Physiol 28:479–501

    Article  CAS  Google Scholar 

  • Taulman JF, Smith KG, Thill RE (1998) Demographic and behavioral responses of southern flying squirrels to experimental logging in Arkansas. Ecol Appl 8:1144–1155

    Article  Google Scholar 

  • Taylor R, Sotka E, Hay M (2002) Tissue-specific induction of herbivore resistance: seaweed response to amphipod grazing. Oecologia 132:68–76

    Article  Google Scholar 

  • Taylor R, Lindquist N, Kubanek J, Hay M (2003) Intraspecific variation in palatability and defensive chemistry of brown seaweeds: effects on herbivore fitness. Oecologia 136:412–423

    Article  PubMed  Google Scholar 

  • Thayer G, Bjorndal K, Ogden J, Williams S, Zieman J (1984) Role of larger herbivores in seagrass communities. Estuaries 7:351–376

    Article  Google Scholar 

  • Tomas F, Turon X, Romero J (2005) Seasonal and small-scale spatial variability of herbivory pressure on the temperate seagrass Posidonia oceanica. Mar Ecol Prog Ser 301:95–107

    Google Scholar 

  • Tomasko DA, Dawes CJ (1989) Effects of partial defoliation on remaining intact leaves in the seagrass Thalassia–Testudinum banks Ex Konig. Bot Mar 32:235–240

    Article  Google Scholar 

  • Valentine J, Duffy J (2005) The central role of grazing in seagrasses ecosystems. In: Larkum A, Orth R, Duarte C (eds) Seagrasses: biology, ecology and conservation. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Valentine JF, Heck KL, Busby J, Webb D (1997) Experimental evidence that herbivory increases shoot density and productivity in a subtropical turtlegrass (Thalassia testudinum) meadow. Oecologia 112:193–200

    Article  Google Scholar 

  • Valentine JF, Heck KL, Kirsch KD, Webb D (2000) Role of sea urchin Lytechinus variegatus grazing in regulating subtropical turtlegrass Thalassia testudinum meadows in the Florida Keys (USA). Mar Ecol Prog Ser 200:213–228

    Google Scholar 

  • Valiela I (1995) Marine ecological processes. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Van Alstyne KL, McCarthy JJ, Hustead CL, Kearns LJ (1999) Phlorotannin allocation among tissues of northeastern pacific kelps and rockweeds. J Phycol 35:483–492

    Article  Google Scholar 

  • Van Alstyne K, Whitman S, Ehlig J (2001) Differences in herbivore preferences, phlorotannin production, and nutritional quality between juvenile and adult tissues from marine brown algae. Mar Biol 139

  • Verlaque M (1987) Relations entre Paracentrotus lividus (Lamarck) et le phytobenthos de Mediterranée occidentale. In: Boudouresque C (ed) International Workshop on Posidonia beds. GIS Posidonie, Marseille, pp 5–36

  • Verlaque M (1990) Relations entre Sarpa salpa (Linnaeus, 1758) (Téléostéen, Sparidae), les autres poissons broteurs et le phytobenthos algal méditerranéen. Oceanologica Acta 13:373–388

    Google Scholar 

  • Weiner J (2004) Allocation, plasticity and allometry in plants. Perspect Plant Ecol Evol Syst 6:207–215

    Article  Google Scholar 

  • Williams S, Heck K (2001) Seagrass community ecology. In: Bertness M, Gaines SD, Hay M (eds) Marine community ecology. Sinauer, Sunderland, pp 317–337

  • Wright JT, de Nys R, Steinberg PD (2000) Geographic variation in halogenated furanones from the red alga Delisea pulchra and associated herbivores and epiphytes. Mar Ecol Prog Ser 207:227–241

    CAS  Google Scholar 

  • Zangerl AR, Bazzaz FA (1992) Plant resistance to herbivores and pathogens. The University of Chicago Press, Chicago

    Google Scholar 

  • Zapata O, McMillan C (1979) Phenolic-acids in seagrasses. Aquat Bot 7:307–317

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Aquàrium de Barcelona for the use of the aquaria facilities, and especially Patrici Bultó, Toni Plaça and Francesc Inglada for their help and support. We also thank Fiona Tomàs and Pere Renom for their help with field work. CN analyses and calorific measurements were performed at the Serveis Cientifico-Tècnics of the Universitat de Barcelona—we thank Pilar Fernández, Ana-Belén Jiménez and Anna Garcia for their assistance and Isidre Casals for his guidance with several analytical techniques. We thank Jesus Francés from the Universitat de Girona for the use of the TA.XT2i Texture Analyser. Alistair Poore, Nick Paul and two anonymous reviewers provided helpful suggestions on versions of this manuscript. This work was supported by grant REN-2002-04020-C02 from the Spanish Ministry of Science and Education. All experimental procedures comply with the current laws of Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Vergés.

Additional information

Communicated by Tony Underwood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vergés, A., Becerro, M.A., Alcoverro, T. et al. Variation in multiple traits of vegetative and reproductive seagrass tissues influences plant–herbivore interactions. Oecologia 151, 675–686 (2007). https://doi.org/10.1007/s00442-006-0606-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-006-0606-x

Keywords

Navigation