Dead wood biomass and turnover time, measured by radiocarbon, along a subalpine elevation gradient

Abstract

Dead wood biomass can be a substantial fraction of stored carbon in forest ecosystems, and coarse woody debris (CWD) decay rates may be sensitive to climate warming. We used an elevation gradient in Colorado Rocky Mountain subalpine forest to examine climate and species effects on dead wood biomass, and on CWD decay rate. Using a new radiocarbon approach, we determined that the turnover time of lodgepole pine CWD (340±130 years) was roughly half as long in a site with 2.5–3°C warmer air temperature, as that of pine (630±400 years) or Engelmann spruce CWD (800±960 and 650±410 years) in cooler sites. Across all sites and both species, CWD age ranged from 2 to 600 years, and turnover time was 580±180 years. Total standing and fallen dead wood biomass ranged from 4.7±0.2 to 54±1 Mg ha−1, and from 2.8 to 60% of aboveground live tree biomass. Dead wood biomass increased 75 kg ha−1 per meter gain in elevation and decreased 13 Mg ha−1 for every degree C increase in mean air temperature. Differences in biomass and decay rates along the elevation gradient suggest that climate warming will lead to a loss of dead wood carbon from subalpine forest.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Arthur MA, Fahey TJ (1990) Mass and nutrient content of decaying boles in an Engelmann spruce-subalpine fir forest, Rocky Mountain National Park, Colorado. Can J For Res 20:730–737

    CAS  Google Scholar 

  2. Bronk Ramsey C (1995) Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37:425–430

    CAS  Google Scholar 

  3. Bronk Ramsey C (2001) Development of the radiocarbon program OxCal. Radiocarbon 43:355–363

    Google Scholar 

  4. Bronk Ramsey C, van der Plicht J, Weninger B (2001) ‘Wiggle Matching’ radiocarbon dates. Radiocarbon 43:381–389

    Google Scholar 

  5. Brown PM, Shepperd WD, Mata SA, McClain DL (1998) Longevity of windthrown logs in a subalpine forest of central Colorado. Can J For Res 28:932–936

    Article  Google Scholar 

  6. Busse MD (1994) Downed bole-wood decomposition in lodgepole pine forests of central Oregon. Soil Sci Soc Am J 58:221–227

    Google Scholar 

  7. Cain WF, Suess HE (1976) Carbon 14 in tree rings. J Geophys Res 81:3688–3694

    CAS  Google Scholar 

  8. Chambers JQ, Higuchi N, Schimel JP (1998) Ancient trees in Amazonia. Nature 391:135–136

    Article  CAS  Google Scholar 

  9. Chambers JQ, Higuchi N, Schimel JP, Ferreira LV, Melack JM (2000) Decomposition and carbon cycling of dead trees in tropical forests of the central Amazon. Oecologia 122:380–388

    Article  Google Scholar 

  10. Chambers JQ, Schimel JP, Nobre AD (2001) Respiration from coarse wood litter in central Amazon forests. Biogeochemistry 52:115–131

    Article  Google Scholar 

  11. Daniels LD, Dobry J, Klinka K, Feller MC (1997) Determining year of death of logs and snags of Thuja plicata in southwestern coastal British Columbia. Can J For Res 27:1132–1141

    Article  Google Scholar 

  12. Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP (2002) Stable isotopes in plant ecology. Annu Rev Ecol Syst 33:507–559

    Article  Google Scholar 

  13. Edminster CB, Mowrer HT, Hinds TE (1982) Volume tables and point-sampling factors for aspen in Colorado. USDA Forest Service Rocky Mountain Forest and Range Experiment Station, Fort Collins

    Google Scholar 

  14. Fahey TJ (1983) Nutrient dynamics of aboveground detritus in lodgepole pine (Pinus contorta spp. latifolia) ecosystems, southeastern Wyoming. Ecol Monogr 53:51–72

    Google Scholar 

  15. Fox CJ (1977) Soil survey of Taylor River area, Colorado. National Cooperative Soil Survey, USDA Forest Service and Soil Conservation Service

    Google Scholar 

  16. Gaudinski JB, Trumbore SE, Davidson EA, Zheng SH (2000) Soil carbon cycling in a temperate forest: radiocarbon-based estimates of residence times, sequestration rates and partitioning of fluxes. Biogeochemistry 51:33–69

    Article  Google Scholar 

  17. Gaudinski JB, Trumbore SE, Davidson EA, Cook AC, Markewitz D, Richter DD (2001) The age of fine-root carbon in three forests of the eastern United States measured by radiocarbon. Oecologia 129:420–429

    Google Scholar 

  18. Grootes PM, Farwell GW, Schmidt FH, Leach DD, Stuiver M (1989) Rapid response of tree cellulose radiocarbon content to changes in atmospheric 14CO2 concentration. Tellus 41B:134–148

    CAS  Google Scholar 

  19. Harmon ME, Franklin JF, Swanson FJ, Sollins P, Gregory SV, Lattin JD, Anderson NH, Cline SP, Aumen NG, Sedell JR, Lienkaemper GW, Cromack KJ, Cummins KW (1986) Ecology of coarse woody debris in temperate ecosystems. Adv Ecol Res 15:133–302

    Google Scholar 

  20. Harmon ME, Krankina ON, Sexton J (2000) Decomposition vectors: a new approach to estimating woody detritus decomposition dynamics. Can J For Res 30:76–84

    Article  Google Scholar 

  21. Hart SC (1999) Nitrogen transformations in fallen tree boles and mineral soil of an old-growth forest. Ecology 80:1385–1394

    Google Scholar 

  22. Harvey AE, Larsen MJ, Jurgensen MF (1981) Rate of woody residue incorporation into Northern Rocky Mountain forest soils. USDA Forest Service, Ogden

    Google Scholar 

  23. Hua Q, Barbetti M, Worbes M, Head J, Levchenko VA (1999) Review of radiocarbon data from atmospheric and tree ring samples for the period 1945–1997 AD. IAWA J 20:261–283

    CAS  PubMed  Google Scholar 

  24. Kromer B, Manning SW, Kuniholm PI, Newton MW, Spurk M, Levin I (2001) Regional 14CO2 offsets in the troposphere: magnitude, mechanisms, and consequences. Science 294:2529–2532

    Article  CAS  PubMed  Google Scholar 

  25. Kueppers LM (2003) Forest carbon cycling along an elevation gradient: the influence of species and climate. Doctoral dissertation, University of California

    Google Scholar 

  26. Laiho R, Prescott CE (1999) The contribution of coarse woody debris to carbon, nitrogen, and phosphorus cycles in three Rocky Mountain coniferous forests. Can J For Res 29:1592–1603

    Article  Google Scholar 

  27. Lambert RL, Lang GE, Reiners WA (1980) Loss of mass and chemical change in decaying boles of a subalpine balsam fir forest. Ecology 61:1460–1473

    Google Scholar 

  28. Levin I, Kromer B (1997) Twenty years of atmospheric 14CO2 observations at Schauinsland station, Germany. Radiocarbon 39:205–218

    CAS  Google Scholar 

  29. Levin I, Kromer B, Schoch-Fischer H, Bruns M, Munnich M, Berdau D, Vogel JC, Munnich KO (1985) 25 years of tropospheric 14C observations in central Europe. Radiocarbon 27:1–19

    CAS  Google Scholar 

  30. Mackensen J, Bauhus J (2003) Density loss and respiration rates in coarse woody debris of Pinus radiata, Eucalyptus regnans and Eucalyptus maculata. Soil Biol Biochem 35:177–186

    Google Scholar 

  31. Mackensen J, Bauhus J, Webber E (2003) Decomposition rates of coarse woody debris—a review with particular emphasis on Australian tree species. Aust J Bot 51:27–37

    Article  Google Scholar 

  32. MathWorks (1984–2002) Matlab. Version 6.5.0. Natick

  33. Myers CA (1964) Volume tables and point-sampling factors for lodgepole pine in Colorado and Wyoming. U. S. Forest Service Rocky Mountain Forest and Range Experiment Station, Fort Collins

    Google Scholar 

  34. Myers CA, Edminster CB (1972) Volume tables and point-sampling factors for Engelmann Spruce in Colorado and Wyoming. USDA Forest Service Rocky Mountain Forest and Range Experiment Station, Fort Collins

    Google Scholar 

  35. Newbould PJ (1967) Methods for estimating the primary production of forests. Blackwell, Oxford

    Google Scholar 

  36. Peet RK (2000) Forests and meadows of the Rocky Mountains. In: Barbour MG, Billings WD (eds) North American terrestrial vegetation, 2nd edn. Cambridge University Press, Cambridge, pp 75–121

    Google Scholar 

  37. Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18:293–320

    Article  Google Scholar 

  38. Randerson JT, Enting IG, Schuur EAG, Caldeira K, Fung IY (2002) Seasonal and latitudinal variability of troposphere delta 14CO2: post bomb contributions from fossil fuels, oceans, the stratosphere, and the terrestrial biosphere. Global Biogeochem Cycles 16:1112. DOI 1110.1029/2002GB001876

    Google Scholar 

  39. Sherriff RL, Veblen TT, Sibold JS (2001) Fire history in high elevation subalpine forests in the Colorado Front Range. Ecoscience 8:369–380

    Google Scholar 

  40. SPSS (1998) Systat. Version 8.0. SPSS, Chicago

  41. Stone JN, MacKinnon A, Parminter JV, Lertzman KP (1998) Coarse woody debris decomposition documented over 65 years on southern Vancouver Island. Can J For Res 28:788–793

    Article  Google Scholar 

  42. Stuiver M, Braziunas TF (1998) Anthropogenic and solar components of hemispheric 14C. Geophys Res Lett 25:329–332

    Article  CAS  Google Scholar 

  43. Stuiver M, Polach HA (1977) Discussion: reporting of 14C data. Radiocarbon 19:355–363

    Google Scholar 

  44. Stuiver M, Quay PD (1981) Atmospheric 14C changes resulting from fossil fuel CO2 release and cosmic ray flux variability. Earth Planet Sci Lett 53:349–362

    Article  Google Scholar 

  45. Stuiver M, Reimer PJ, Bard E, Beck JW, Burr GS, Hughen KA, Kromer B, McCormac G, van der Plicht J, Spurk M (1998a) INTCAL98 radiocarbon age calibration, 24,000-0 cal BP. Radiocarbon 40:1041–1083

    CAS  Google Scholar 

  46. Stuiver M, Reimer PJ, Braziunas TF (1998b) High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40:1127–1151

    CAS  Google Scholar 

  47. Tans PP, de Jong AFM, Mook WG (1978) Chemical pretreatment and radial flow of 14C in tree rings. Nature 271:234–235

    CAS  Google Scholar 

  48. Tinker DB, Knight DH (2000) Coarse woody debris following fire and logging in Wyoming lodgepole pine forests. Ecosystems 3:472–483

    Article  Google Scholar 

  49. Torn MS, Trumbore SE, Chadwick OA, Vitousek PM, Hendricks DM (1997) Mineral control of soil organic carbon storage and turnover. Nature 389:170–173

    Article  CAS  Google Scholar 

  50. Trumbore SE (1993) Comparison of carbon dynamics in tropical and temperate soils using radiocarbon measurements. Global Biogeochem Cycles 7:275–290

    CAS  Google Scholar 

  51. Trumbore SE, Chadwick OA, Amundson R (1996) Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change. Science 272:393–396

    CAS  Google Scholar 

  52. Turner MG, Romme WH, Tinker DB (2003) Surprises and lessons from the 1988 Yellowstone fires. Front Ecol Environ 1:351–358

    Google Scholar 

  53. Wang CK, Bond-Lamberty B, Gower ST (2002) Environmental controls on carbon dioxide flux from black spruce coarse woody debris. Oecologia 132:374–381

    Article  Google Scholar 

Download references

Acknowledgements

We thank Paula Reimer for assistance in developing the radiocarbon reference curve, Minze Stuiver for sharing unpublished radiocarbon values, David Freedman for calculating 1997–2001 atmospheric radiocarbon values and errors, Christopher Ramsey for modifying and advice in using OxCal, Jim Kirchner for help with error calculations, Tom Guilderson for running samples on the AMS, the CAMS laboratory staff for help in radiocarbon sample preparation, Jos Burns for preparing Fig. 1, and Paul Brooks, Lara Cushing, John Elliott, Nathan Kraft, and Tracy Perfors for field and laboratory assistance. We also thank Carrie Masiello, Margaret Torn, Whendee Silver, Carla D’Antonio and two anonymous referees for helpful reviews or discussions. The research was funded by the DOE Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory and a DOE Graduate Research Environmental Fellowship to L.M.K.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lara M. Kueppers.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kueppers, L.M., Southon, J., Baer, P. et al. Dead wood biomass and turnover time, measured by radiocarbon, along a subalpine elevation gradient. Oecologia 141, 641–651 (2004). https://doi.org/10.1007/s00442-004-1689-x

Download citation

Keywords

  • Coarse woody debris
  • Decomposition
  • Ecosystem carbon balance
  • Subalpine forest
  • Climate