Skip to main content
Log in

Successional changes in soil nitrogen availability, non-symbiotic nitrogen fixation and carbon/nitrogen ratios in southern Chilean forest ecosystems

  • Ecosystem Ecology
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Vast areas of southern Chile are now covered by second-growth forests because of fire and logging. To study successional patterns after moderate-intensity, anthropogenic fire disturbance, we assessed differences in soil properties and N fluxes across a chronosequence of seven successional stands (2–130 years old). We examined current predictions of successional theory concerning changes in the N cycle in forest ecosystems. Seasonal fluctuations of net N mineralization (Nmin) in surface soil and N availability (Na; Na=NH +4 –N+NO 3 –N) in upper and deep soil horizons were positively correlated with monthly precipitation. In accordance with theoretical predictions, stand age was positively, but weakly related to both Na (r 2=0.282, P<0.001) and total N (Ntot; r 2=0.192, P<0.01), and negatively related to soil C/N ratios (r 2=0.187, P<0.01) in surface soils. A weak linear increase in soil Nmin (upper plus deep soil horizons) was found across the chronosequence (r 2=0.124, P<0.022). Nmin occurred at modest rates in early successional stands, suggesting that soil disturbance did not impair microbial processes. The relationship between N fixation (Nfix) in the litter layer and stand age best fitted a quadratic model (r 2=0.228, P<0.01). In contrast to documented successional trends for most temperate, tropical and Mediterranean forests, non-symbiotic Nfix in the litter layer is a steady N input to unpolluted southern temperate forests during mid and late succession, which may compensate for hydrological losses of organic N from old-growth ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–f
Fig. 3a–e
Fig. 4

Similar content being viewed by others

References

  • Adams MA, Attiwill PM (1984) Role of Acacia spp. in nutrient balance and cycling in regenerating Eucalyptus regnans forests. I. Temporal changes in biomass and nutrient content. Aust J Bot 32:205–215

    CAS  Google Scholar 

  • Aravena JC, Carmona MR, Pérez CA, Armesto JJ (2002) Changes in tree species richness, stand structure and soil properties in a successional chronosequence in northern Chiloé Island. Chil Rev Chil Hist Nat 75:339–360

    Google Scholar 

  • Armesto JJ, Pickett STA (1985) A mechanistic approach to the study of succession in the Chilean matorral. Rev Chil Hist Nat 58:9–17

    Google Scholar 

  • Armesto JJ, Aravena JC, Villagrán C, Pérez CA, Parker GG (1995) Bosques templados de la cordillera de la costa. In: Armesto JJ, Villagrán C, Arroyo MT (eds) Ecología de los bosques nativos de Chile. Editorial Universitaria, Santiago, pp 199–212

  • Carmona MR, Armesto JJ, Aravena JC, Pérez CA (2002) Coarse woody debris biomass in successional and primary temperate forests in Chiloé Island, Chile. For Ecol Manage 164:265–275

    Article  Google Scholar 

  • Christie DA, Armesto JJ (2003) Regeneration microsites and tree species coexistence in temperate rain forests of Chiloé Island, Chile. J Ecol 91:776–784

    Article  Google Scholar 

  • Compton JE, Boone RD, Motzkin G, Foster DR (1998) Soil carbon and nitrogen in a pine-oak sand plain in central Massachusettts: role of vegetation and land use history. Oecologia 116:536–542

    Article  Google Scholar 

  • CONAF-CONAMA-BIRF (1999) Catastro y evaluación de recursos vegetacionales nativos de Chile. CONAF-CONAMA, Santiago

  • Darwin C (1860) Darwin en Chile. Viaje de un naturalista alrededor del mundo. Editorial Universitaria, Santiago

  • Dawson JO (1983) Dinitrogen fixation in forest ecosystems. Can J Microbiol 29:979–992

    CAS  Google Scholar 

  • Di Castri F, Hajek ER (1976) Bioclimatología de Chile. Vicerrectoría de comunicaciones., Universidad Católica de Chile, Santiago

  • Donoso C, Lara A (1996) Utilización de los bosques nativos en Chile: pasado, presente y futuro. In: Armesto JJ, Villagrán C, Arroyo MT (eds) Ecología de los Bosques Nativos de Chile. Editorial Universitaria, Santiago, pp 71–99

  • Evans CA, Miller EK, Friedland AJ (1998) Nitrogen mineralization associated with birch and fir under different soil moisture regimes. Can J For Res 28:1890–1898

    Article  Google Scholar 

  • Ewel JJ, Berish C, Brown B, Price N, Raich J (1981) Slash and burn impacts on a Costa Rican wet forest site. Ecology 62:816–829

    CAS  Google Scholar 

  • Goodale CL, Aber JD (2001) The long term effects of land-use history of nitrogen cycling in northern hardwood forests. Ecol Appl 11:253–267

    Google Scholar 

  • Gorham E, Vitousek PM, Reiners WA (1979) The regulation of chemical budgets over the course of terrestrial ecosystem succession. Annu Rev Ecol Syst 10:53–84

    Article  CAS  Google Scholar 

  • Harmon ME, Franklin JF, Swanson FJ, Sollins P, Gregory SV, Lattin JD, Anderson NH, Cline SP, Aumen NG, Sedell JR, Lienkaemper GW, Cromack K, Cummins KW (1986) Ecology of coarse woody debris in temperate ecosystems. Adv Ecol Res 15:133–302

    Google Scholar 

  • Heath B, Sollins P, Perry DA, Cromak K (1987) Asymbiotic nitrogen fixation in litter from the Pacific Northwest forests. Can J For Res 18:68–74

    Google Scholar 

  • Hedin L, Armesto JJ, Johnson AH (1995) Patterns of nutrient loss from unpolluted, old-growth temperate forests: evaluation of biogeochemical theory. Ecology 76:493–509

    Google Scholar 

  • Hope SM, Li YC (1997) Respiration, nitrogen fixation, and mineralizable nitrogen, spatial and temporal patterns within two Oregon Douglas fir stands. Can J For Res 27:501–509

    Article  Google Scholar 

  • Johnson DW, Susfalk RB (1997) Nutrient fluxes in forests of the Sierra Nevada mountains, United States of America. Global Biogeochem Cycles 11:673–681

    Article  CAS  Google Scholar 

  • Jordan C (1985) Nutrient cycling in tropical forest ecosystems. Wiley, New York

  • Jurgensen MF, Larsen MJ, Graham RT, Harvey AE (1987) Nitrogen fixation in woody residue of northern Rocky Mountain conifer forests. Can J For Res 17:1283–1288

    Google Scholar 

  • Kauffman JB, Cummings DL, Ward DE (1995) Fire in the Brazilian Amazon: biomass, nutrient pools, and losses in slashed primary forests. Oecologia 104:397–408

    Google Scholar 

  • López B, Aceituno P (1998) Geoclima, version 1.1

  • Matson PA, Vitousek PM, Ewel JJ, Mazzarino MJ (1987) Nitrogen transformations following tropical forest felling and burning on a volcanic soil. Ecology 68:491–502

    Google Scholar 

  • Myrold DD, Ruess RR, Klug MJ (1999) Dinitrogen fixation. In: Robertson GP, Coleman DC, Bledsoe CS, Sollins P (eds) Standard soil methods for long-term ecological research. Oxford University Press, New York, pp 241–257

  • Pérez CA, Hedin LO, Armesto JJ (1998) Nitrogen mineralization in two unpolluted old-growth forests of contrasting biodiversity and dynamics. Ecosystems 1:361–373

    Article  CAS  Google Scholar 

  • Pérez CA, Armesto JJ, Torrealba C, Carmona MR (2003) Litterfall dynamics and nitrogen-use efficiency in two evergreen temperate rain forests of southern Chile. Aust Ecol 5:591–600

    Article  Google Scholar 

  • Perry DA (1994) Forest ecosystems. Hopkins University Press, London

  • Pickett STA (1989) Space-for-time substitution as an alternative to long-term studies. In: Likens GE (ed) Long-term studies in ecology: approaches and alternatives. Springer, Berlin Heidelberg New York, pp 110–135

  • Reiners WA (1981) Nitrogen cycling in relation to ecosystem succession. In: Clark FE, Roswall T (eds) Terrestrial nitrogen cycles. Ecol Bull 33:507–528

    Google Scholar 

  • Roskoski JP (1980) Nitrogen fixation in hardwood forests of the northeastern United States. Plant Soil 54:33–44

    CAS  Google Scholar 

  • Schmithüsen J (1957) Die räumliche Ordnung der chilenischen Vegetation. Bonn Geog Abh 17:1–86

    Google Scholar 

  • Skujins J, Tann CC, Börjesson I (1987) Dinitrogen fixation in a montane forest sere determined by 15N2 assimilation and in situ acetylene-reductions methods. Soil Biol Biochem 19:465–471

    Article  Google Scholar 

  • Veblen TT, Schlegel FM, Oltremari JV (1983) Temperate broad-leaved evergreen forests of South America. In: Ovington JD (ed) Temperate broad-leaved evergreen forests. Elsevier, Amsterdam, pp 5–31

  • Vitousek PM, Matson PA (1984) Mechanisms of nutrient retention in forest ecosystems: a field experiment. Science 255:51–52

    Google Scholar 

  • Wilson MF, Armesto JJ (1996) The natural history of Chiloé: on Darwin’s trail. Rev Chil Hist Nat 69:149–161

    Google Scholar 

Download references

Acknowledgements

Funding for this work was provided by grants from Fondecyt 1990946, Millenium Nucleus P99-103 FICM, IAI-CRN-012, Fundación Antorchas and FONDAP-FONDECYT grant 1501-0001 to the Centre for Advanced Studies in Ecology and Biodiversity. This is a contribution to the Research Program of Senda Darwin Biological Station, Chiloé, Chile. Two anonymous reviewers provided helpful comments on an earlier version. M. Carmona was supported by a doctoral fellowship from Conicyt and Fondecyt Grant 2000022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia A. Pérez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez, C.A., Carmona, M.R., Aravena, J.C. et al. Successional changes in soil nitrogen availability, non-symbiotic nitrogen fixation and carbon/nitrogen ratios in southern Chilean forest ecosystems. Oecologia 140, 617–625 (2004). https://doi.org/10.1007/s00442-004-1627-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-004-1627-y

Keywords

Navigation