Skip to main content

Why do melanin ornaments signal individual quality? Insights from metal element analysis of barn owl feathers

An Erratum to this article was published on 08 July 2003

Abstract

Melanin-based variation in colour patterns is under strong genetic control and not, or weakly, sensitive to the environment and body condition. Current signalling theory predicts that such traits may not signal honestly phenotypic quality because their production does not entail a significant fitness cost. However, recent studies revealed that in several bird species melanin-based traits covary with phenotypic attributes. In a first move to understand whether such covariations have a physiological basis, we quantified concentrations of five chemical elements in two pigmented plumage traits in the barn owl (Tyto alba). This bird shows continuous variation from immaculate to heavily marked with black spots (plumage spottiness) and from dark reddish-brown to white (plumage coloration), two traits that signal various aspects of individual quality. These two traits are sexually dimorphic with females being spottier and darker coloured than males. We found an enhancement in calcium and zinc concentration within black spots compared with the unspotted feather parts. The degree to which birds were spotted was positively correlated with calcium concentration within spots, whereas the unspotted feather parts of darker reddish-brown birds were more concentrated in zinc. This suggests that two different pigments are responsible for plumage spottiness and plumage coloration. We discuss the implications of our results in light of recent experimental field studies showing that female spottiness signals offspring humoral response towards an artificially administrated antigen, parasite resistance and fluctuating asymmetry of wing feathers.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2
Fig. 3
Fig. 4.

References

  • Andersson M (1994) Sexual selection. Princeton University Press, Princeton, N.J.

  • Badyaev AV, Hill GE (2000) Evolution of sexual dichromatism: contribution of carotenoid- versus melanin-based coloration. Biol J Linn Soc 69:153–172

    Article  Google Scholar 

  • Barsh GS (1996) The genetics of pigmentation: from fancy genes to complex traits. Trends Genet 12:299–305

    Article  CAS  PubMed  Google Scholar 

  • Baudvin H (1975) Biologie de reproduction de la chouette effraie (Tyto alba) en Côte d'Or: premiers résultats. Jean Blanc 14:1–51

    Google Scholar 

  • Bogacz A, Buszman E, Wilczok T (1989) Competition between metal ions for dopa-melanin. Stud Biophys 132:189–195

    CAS  Google Scholar 

  • Bowers RR, Biboso A, Chavez O (1997) The role of alpha-MSH, its agonists, and C-AMP in vitro avian melanocytes. Pigment Cell Res 10:41–45

    CAS  PubMed  Google Scholar 

  • Buckley PA (1987) Mendelian genes. In: Cooke F, Buckley PA (eds) Avian genetics, a population and ecological approach. Academic Press, London, pp 1–44

  • Burger J (1994) Metal in avian feathers: bioindicators of environmental pollution. Res Environ Toxicol 26:351–355

    CAS  Google Scholar 

  • Catania A, Cutuli M, Garofalo L, Carlin A, Airaghi L, Barcellini W, Lipton JM (2000) The neuropeptide α-MSH in host defense. Ann NY Acad Sci 917:227–231

    CAS  PubMed  Google Scholar 

  • Chen H, Hayakawa D, Emura S, Ozawa Y, Okumura T, Shoumara S (2002) Effect of low or high dietary calcium on the morphology of the rat femur. Histol Histopathol 17:1129–1135

    PubMed  Google Scholar 

  • Goede AA (1985) Mercury, selenium, arsenic and zinc in waders from the dutch Wadden Sea. Environ Pollut A37:287–309

    Google Scholar 

  • Hartner L, Huebner N, Schreiber N (1992) Über die Eignung der Vogelfeder als Bioindikator. Hohenheimer Umwelttagung 24:75–91

    CAS  Google Scholar 

  • Hearing VJ, Tsukamoto K (1991) Enzymatic control of pigmentation in mammals. FASEB J 5:2902–2909

    CAS  PubMed  Google Scholar 

  • Hill GE, Brawner WR (1998) Melanin-based plumage coloration in the house finch is unaffected by coccidial infection. Proc R Soc Lond B 265:1105–1109

    Article  Google Scholar 

  • Hurwitz S (1989) Calcium homeostasis in birds. Vitam Horm 45:173–221

    CAS  PubMed  Google Scholar 

  • Ichiyama T, Sato S, Okada K, Catania A, Lipton JM (2000) The neuroimmunomodulatory peptide α-MSH. Ann NY Acad Sci 917:221–226

    CAS  PubMed  Google Scholar 

  • Lerner AB, McGuire JS (1961) Effect of alpha- and beta-melanocyte stimulating hormones on the skin colour of man. Nature 189:176–179

    CAS  Google Scholar 

  • Majerus MEN (1998) Melanism, Evolution in action. Oxford University Press, Oxford

  • Matics R, Hoffmann G, Nagy T, Roulin A (2002) Random pairing with respect to plumage coloration in Hungarian barn owls. J Ornithol 143:493–495

    Google Scholar 

  • McGraw KJ, Hill GE (2000) Differential effects of endoparasitism on the expression of carotenoid- and melanin-based ornamental coloration. Proc R Soc Lond B 267:1525–1531

    Article  CAS  PubMed  Google Scholar 

  • Mountjoy K, Kong PL, Willars DH, Wilkinson WO (2001) Melanocortin receptor-mediated mobilization of intracellular free calcium in HEK 293 cells. Physiol Genom 5:11–19

    CAS  Google Scholar 

  • Murton RK, Westwood NJ, Thearle RJP (1973) Polymorphism and the evolution of continuous breeding season in the pigeon Columba livia. J Reprod Fertil [Suppl] 19:561–575

  • Niecke M (1999) Ist die selektive Anreicherung von Elementen in melaninhaltigen Vogelfedern ein generelles Phänomen? Beitr Gefiederkd Morphol Vögel 6:36–43

  • Niecke M, Ambor S, Kühnast O, Ellenberg H (1990a) Vogelfedern als Biomonitoren für die atmosphärischeSchwermetallbelastung Untersuchungen mit der Protonenmikrosonde, Teil I. Externe Deposition von Schwermetallen auf Elsternfedern. UmweltwissSchadstoff-Forschung 2:71–75

  • Niecke M, Ambor S, Kühnast O, Ellenberg H (1990b) Vogelfedern als Biomonitoren für die atmosphärischeSchwermetallbelastung Untersuchungen mit der Protonenmikrosonde, Teil II. Die mikroskopische Verteilung von Schwermetallen auf Elsternfedern. UmweltwissSchadstoff-Forschung 4:188–192

  • Okazaki K, Kuwata K, Miki Y, Shiga S, Shiga T (1985) Electron spin relaxation of synthetic melanin and melanin-containing human tissues as studied by electron spin echo and electron spin resonance. Arch Biochem Biophys 242:197–205

    CAS  PubMed  Google Scholar 

  • Price T, Bontrager A (2001) The evolution of plumage patterns. Curr Biol 11:405–408

    Article  PubMed  Google Scholar 

  • Prota G (1992) Melanins and Melanogenesis. Academic Press London

  • Rohwer S, Rohwer FC (1978) Status signalling in harris sparrows: experimental deceptions achieved. Anim Behav 26, 1012–1022

    Google Scholar 

  • Roulin A (1999a) Delayed maturation of plumage coloration and spottiness in the barn owl Tyto alba. J Ornithol 140:193–197

    Google Scholar 

  • Roulin A (1999b) Nonrandom pairing by male barn owls (Tyto alba) with respect to a female plumage trait. Behav Ecol 10:688–695

    Article  Google Scholar 

  • Roulin A, Dijkstra C (2003) Genetic and environmental components of variation in eumelanin and phaeomelanin sex-traits in the barn owl. Heredity 90:359–364

    Article  CAS  PubMed  Google Scholar 

  • Roulin A, Richner H, Ducrest A-L (1998) Genetic, environmental and condition-dependent effects on female and male ornamentation in the barn owl Tyto alba. Evolution 52:1451–1460

    Google Scholar 

  • Roulin A, Ducrest A-L, Dijkstra C (1999) Effects of brood size manipulations on parents and offspring in the barn owl, Tyto alba. Ardea 87:91–100

    Google Scholar 

  • Roulin A, Jungi TW, Pfister H, Dijkstra C (2000) Female barn owls (Tyto alba) advertise good genes. Proc R Soc Lond B 267:937–941

    Article  CAS  PubMed  Google Scholar 

  • Roulin A, Riols C, Dijkstra C, Ducrest A-L (2001a) Female- and male-specific signals of quality in the barn owl. J Evol Biol 14:255–267

    Article  Google Scholar 

  • Roulin A, Riols C, Dijkstra C, Ducrest A-L (2001b) Female plumage spottiness and parasite resistance in the barn owl (Tyto alba). Behav Ecol 12:103–110

    Article  Google Scholar 

  • Roulin A, Ducrest A-L, Balloux F, Dijkstra C, Riols C (2003) A female melanin-ornament signals offspring fluctuating asymmetry in the barn owl. Proc R Soc Lond B 270:167–171

    Article  PubMed  Google Scholar 

  • Salceda R, Sanchez-Chavez G (2000) Calcium uptake, release and ryanodine binding in melanosomes from retinal pigment epithelium. Cell Calcium 27:223–229

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Ferrer á, Rodriguez-López JN, García-Cánovas F, García-Carmona F (1995) Tyrosinase: a comprehensive review of its mechanism. Biochem Biophys Acta 1247:1–11

    PubMed  Google Scholar 

  • Scanlon PF, O´Brien TG, Schauer NL, Coggin JL, Steffen DE (1979) Heavy metal levels in feathers of wild turkeys from Virginia. Bull Environ Contam Toxicol 21:591

    CAS  PubMed  Google Scholar 

  • Scanlon PF, Oderwald RG, Dietrick TJ, Coggin JL (1980) Heavy metal concentration in feathers of Ruffed Grouse shot by Virginian hunters. Bull Environ Contam Toxicol 25:947–949

    CAS  PubMed  Google Scholar 

  • Stettenheim P (1972) The integument of birds In: King F (ed) Avian biology II. Academic Press, New York, pp 1–63

    Google Scholar 

  • Wilkinson L (1989) SYSTAT: the system for statistics. SYSTAT, Evanston, Ill.

Download references

Acknowledgements

We thank Anne-Lyse Ducrest, the late Martin Epars and Henri Etter for their help during the fieldwork and Willy Rehpenning for his help in accelerator maintenance. Pierre Bize, Anne-Lyse Ducrest and two anonymous referees provided useful comments on a first draft of this paper. Fieldwork was under the legal authorisation of the Service vétérinaire du canton de Vaud. A.R. was supported by a grant of the Swiss Science Foundation (grant no. 823A-064710). We are grateful to Cor Dijkstra and Guido Meeuwissen for having sexed nestlings using the CHD method.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Roulin.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00442-003-1341-1

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Niecke, M., Rothlaender, S. & Roulin, A. Why do melanin ornaments signal individual quality? Insights from metal element analysis of barn owl feathers. Oecologia 137, 153–158 (2003). https://doi.org/10.1007/s00442-003-1307-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-003-1307-3

Keywords