Skip to main content
Log in

The natural abundance of 15N in mat-forming lichens

  • Ecosystems Ecology
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Natural abundance of 15N and [N] was studied in thalli of mat-forming lichens collected from tundra and heathland sites in the northern and southern hemispheres. The study includes samples of British Cladonia portentosa from sites in regions of high and low N-loading and in heathland growing both directly on peat and independently of the soil substratum, in a canopy of prostrate gorse (Ulex minor). In the mat-forming lichens examined, a non-random pattern in [N] and δ15N was characterised by a minimum in δ15N, which occurred most frequently at 20–40 mm below the thallus apex. Nitrogen concentration increased above this point, towards the apex, though remained invariably low towards the thallus base. We discuss the significance of the pattern in [N] and δ15N for current theories describing the uptake and recycling of nitrogen by mat-forming lichens in oligotrophic habitats. Our data are incompatible with the suggested uptake of soil organic-N depleted in 15N, though are consistent with possible internal recycling and the development of a structural necromass. The study emphasises the internal fractionation of nitrogen isotopes and provides a caveat against the assumption that values of δ15N provide an unequivocal indicator of source-sink relationships in nitrogen cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–C.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. δ15N (‰)=[(R sample/R standard)-1]×1,000; where R is the corresponding ratio 15N/14N

References

  • Ahti T, Oksanen J (1990) Epigeic lichen communities of taiga and tundra regions. Vegetatio 86:39–70

    Google Scholar 

  • Arseneault D, Villeneuve N, Boismenu C, Leblanc Y, Deshaye J (1997) Estimating lichen biomass and caribou grazing on the wintering grounds of northern Québec: an application of fire history and Landsat data. J Appl Ecol 34:65–78

    Google Scholar 

  • Brown DH, Avalos A, Miller JE, Bargagli R (1994) Interactions of lichens with their mineral environment. Cryptogamic Bot 4:135–142

    Google Scholar 

  • Cornelissen JHC, Callaghan TV, Alatalo JM, Michelsen A, Graglia E, Hartley AE, Hik DS, Hobbie SE, Press MC, Robinson CH, Henry GHR, Shaver GR, Phoenix GK, Gwynn Jones D, Jonasson S, Chapin FS III, Molau U, Neill C, Lee JA, Melillo JM, Sveinbjörnsson B, Aerts R (2001) Global change and arctic ecosystems: is lichen decline a function of increases in vascular plant biomass. J Ecol 89:984–994

    Article  Google Scholar 

  • Crête M, Morneau C, Nault R (1990) Biomasse et espèces de lichens terrestres disponibles pour le caribou dans le nord du Québec. Can J Bot 68:2047–2053

    Google Scholar 

  • Crittenden, PD (1989) Nitrogen relations in mat-forming lichens. In: Boddy L, Marchant R, Read DJ (eds) Nitrogen, phosphorus and sulphur utilization by fungi. Cambridge University Press, Cambridge, pp 243–268

  • Crittenden PD (1991) Ecological significance of necromass production in mat-forming lichens. Lichenologist 23:323–331

    Google Scholar 

  • Crittenden PD (1996) The effect of oxygen deprivation on inorganic nitrogen uptake in an Antarctic macrolichen. Lichenologist 28:347–354

    Article  Google Scholar 

  • Crittenden PD, Kershaw KA (1978) Discovering the role of lichens in the nitrogen cycle in boreal-arctic ecosystems. Bryologist 81:258–267

    CAS  Google Scholar 

  • Crittenden PD, Kałucka I, Oliver E (1994) Does nitrogen supply limit the growth of lichens? Cryptogamic Bot 4:143–155

    Google Scholar 

  • Freyer HD (1978) Seasonal trends of NH4 + and NO3 - nitrogen isotope composition in rain collected at Jülich, Germany. Tellus 30:83–92

    CAS  Google Scholar 

  • Greenhalgh GN, Anglesea D (1979) The distribution of algal cells in lichen thalli. Lichenologist 11:283–292

    Google Scholar 

  • Haag RW (1974) Nutrient limitations to plant production in two tundra communities. Can J Bot 52:103–116

    CAS  Google Scholar 

  • Handley LL, Raven JA (1992) The use of natural abundance of nitrogen isotopes in plant physiology and ecology. Plant Cell Environ 15:965–985

    CAS  Google Scholar 

  • Handley LL, Scrimgeour CM (1997) Terrestrial plant ecology and 15N natural abundance: the present limits to interpretation for uncultivated systems with original data from a Scottish old field. Adv Ecol Res 27:133–212

    Google Scholar 

  • Heaton THE (1986) Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: a review. Chem Geol 59:87–102

    CAS  Google Scholar 

  • Hill DJ (1985) Changes in photobiont dimensions and numbers during co-development of lichen symbionts. In: Brown DH (ed) Lichen physiology and cell biology. Plenum, London, pp 303–317

  • Hoch MP, Fogel ML, Kirchman DL (1994) Isotopic fractionation during ammonium uptake by marine microbial assemblages. Geomicrobiol J 12:113–127

    CAS  Google Scholar 

  • Högberg P (1997) 15N natural abundance in soil-plant systems. New Phytol 137:179–203

    Article  Google Scholar 

  • Högberg P, Högberg MN, Quist ME, Ekblad, Näsholm T (1999) Nitrogen isotope fractionation during nitrogen uptake by ectomycorrhizal and non-mycorrhizal Pinus sylvestris. New Phytol 142:569–576

    Article  Google Scholar 

  • Hyvärinen M, Crittenden PD (1996) Cation ratios in Cladonia portentosa as indices of precipitation acidity in the British Isles. New Phytol 132:521–532

    Google Scholar 

  • Hyvärinen M, Crittenden PD (1998a) Growth of the cushion-forming lichen, Cladonia portentosa, at nitrogen-polluted and unpolluted heathland sites. Environ Exp Bot 40:67–76

    Article  Google Scholar 

  • Hyvärinen M, Crittenden PD (1998b) Relationships between atmospheric nitrogen inputs and the vertical nitrogen and phosphorus concentration gradients in the lichen Cladonia portentosa. New Phytol 140:519–530

    Article  Google Scholar 

  • Hyvärinen M, Crittenden PD (2000) 33P translocation in the thallus of the mat-forming lichen Cladonia portentosa. New Phytol 145:281–288

    Article  Google Scholar 

  • Kärenlampi L (1970) Distribution of chlorophyll in the lichen Cladonia alpestris. Rep Kevo Subarct Res Stat 7:1-8

    Google Scholar 

  • Kershaw KA (1977) Studies on lichen-dominated systems. XX. An examination of some aspects of the northern boreal lichen woodlands in Canada. Can J Bot 55:393–410

    Google Scholar 

  • Kielland K (1997) Role of free amino acids in the nitrogen economy of arctic cryptogams. Ecoscience 4:75–79

    Google Scholar 

  • Lange OL, Hahn SC, Meyer A, Tenhunen JD (1998) Upland tundra in the foothills of the Brooks Range, Alaska, USA: lichen long-term photosynthetic CO2 uptake and net carbon gain. Arct Alp Res 30:252–261

    Google Scholar 

  • Macko SA, Helleur R, Hartley G, Jackman P (1990) Diagenesis of organic matter—a study using stable isotopes of individual carbohydrates. Adv Org Geochem 16:1129–1137

    CAS  Google Scholar 

  • Mariotti A, Pierre D, Vedy JC, Bruckert S, Guillemot J (1980) The abundance of natural nitrogen 15 in the organic matter of soils along an altitudinal gradient. Catena 7:293–300

    CAS  Google Scholar 

  • Michelsen A, Schmidt IK, Jonasson S, Quarmby C, Sleep D (1996) Leaf 15N abundance of subarctic plants provides field evidence that ericoid, ectomycorrhizal and non- and arbuscular mycorrhizal species access different sources of soil nitrogen. Oecologia 105:53–63

    Google Scholar 

  • Michelsen A, Quarmby C, Sleep D, Jonasson S (1998) Vascular plant 15N natural abundance in heath and forest tundra ecosystems is closely correlated with presence and type of mycorrhizal fungi in roots. Oecologia 115:406–418

    Article  Google Scholar 

  • Moore H (1974) Isotopic measurement of atmospheric nitrogen compounds. Tellus 26:169–174

    CAS  Google Scholar 

  • Moore H (1977) The isotopic composition of ammonia, nitrogen dioxide and nitrate in the atmosphere. Atmos Environ 11:1239–1243

    CAS  Google Scholar 

  • Moser TJ, Nash TH III, Link SO (1983) Diurnal gross photosynthetic patterns and potential seasonal CO2 assimilation in Cladonia stellaris and Cladonia rangiferina. Can J Bot 61:642–655

    CAS  Google Scholar 

  • Nadelhoffer KJ, Fry B (1988) Controls on natural nitrogen-15 and carbon-13 abundances in forest soil organic matter. Soil Sci Soc Am J 52:1633–1640

    Google Scholar 

  • Nadelhoffer K, Shaver G, Fry B, Giblin A, Johnson L, McKane R (1996) 15N natural abundances and N use by tundra plants. Oecologia 107:386–394

    Google Scholar 

  • Nash TH III, Moser TJ, Link SO (1980) Nonrandom variation of gas exchange within arctic lichens. Can J Bot 58:1181–1186

    Google Scholar 

  • Näsholm T, Ekblad A, Nordin A, Giesler R, Högberg M, Högberg P (1998) Boreal forest plants take up organic nitrogen. Nature 392:914–916

    Article  Google Scholar 

  • Nieboer E, Richardson DHS, Tomassini FD (1978) Mineral uptake and release by lichens: an overview. Bryologist 81:226–246

    CAS  Google Scholar 

  • Pakarinen P (1981) Nutrient and trace metal content and retention in reindeer lichen carpets of Finnish ombrotrophic bogs. Ann Bot Fenn 18:265–274

    CAS  Google Scholar 

  • Paustian K (1985) Influence of fungal growth pattern on decomposition and nitrogen mineralization in a model system. In: Fitter AH, Arkinson D, Rend DJ, Usher MB (eds) Ecological interactions in soil: plants, microbes and animals. British Ecological Society Special Publication No. 4. Blackwell, Oxford, pp 159–173

    Google Scholar 

  • Paustian K, Schnürer J (1987a) Fungal growth response to carbon and nitrogen limitation: a theoretical model. Soil Biol Biochem 19:613–620

    CAS  Google Scholar 

  • Paustian K, Schnürer J (1987b) Fungal growth response to carbon and nitrogen limitation: application of a model to laboratory and field data. Soil Biol Biochem 19:621–629

    Article  CAS  Google Scholar 

  • Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18:293–320

    Article  Google Scholar 

  • Robinson D (2001) δ15N as an integrator of the nitrogen cycle. Trends Ecol Evol 16:153–162

    PubMed  Google Scholar 

  • Rodwell JS (ed) (1991) British plant communities, vol 2. Mires and heaths. Cambridge University Press, Cambridge

  • Schulze E-D, Chapin FS III, Gebauer G (1994) Nitrogen nutrition and isotope differences among life forms at the northern treeline of Alaska. Oecologia 100:406–412

    Google Scholar 

  • Shaver GR, Chapin FS III (1980) Response to fertilization by various plant growth forms in an Alaskan tundra: nutrient accumulation and growth. Ecology 61:662–675

    CAS  Google Scholar 

  • Shaver GR, Chapin FS III (1986) Effect of fertilizer on production and biomass of tussock tundra, Alaska, U.S.A. Arct Alp Res 18:261–268

    Google Scholar 

  • Shearer G, Duffy J, Kohl DH, Commoner B (1974) A Steady-state model of isotopic fractiunation accompanying nitrogen transformations in soil. Soil Sci Soc Am Proc 38:315–322

    CAS  Google Scholar 

  • Shearer G, Kohl DH, Chien S-H (1978) The nitrogen-15 abundance in a wide variety of soils. Soil Sci Soc Am J 42:899–902

    CAS  Google Scholar 

  • Stribley DP, Read DJ (1980) The biology of mycorrhiza in the Ericaceae. VII. The relationship between mycorrhizal infection and the capacity to utilise simple and complex organic nitrogen sources. New Phytol 86:365–371

    CAS  Google Scholar 

  • Sveinbjörnsson B (1987) Reindeer lichen productivity as a function of mat thickness. Arct Alp Res 19:437–441

    Google Scholar 

  • Tapper RC (1983) Uptake of methylamine by symbionts of the lichen, Cladonia convoluta (algal symbiont: Trebouxia). New Phytol 95:61–67

    CAS  Google Scholar 

  • Taylor AFS, Högbom L, Högberg M, Lyon AJE, Näsholm T, Högberg P (1997) Natural 15N abundance in fruit bodies of ectomycorrhizal fungi from boreal forests. New Phytol 136:713–720

    Article  Google Scholar 

  • Vitousek P (1982) Nutrient cycling and nutrient use efficiency. Am Nat 119:553–572

    Article  Google Scholar 

  • Warren Wilson J (1966) An analysis of plant growth and its control in Arctic environments. Ann Bot 30:383–402

    Google Scholar 

  • Yeatman SG, Spokes LJ, Dennis PF, Jickells TD (2001) Comparisons of aerosol nitrogen isotopic composition at two polluted coastal sites. Atmos Environ 35:1307–1320

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge funding for the project provided by the NERC (GANE programme). C.M.S. is supported by the Scottish Executive Environmental and Rural Affairs Department. We thank also Forest Enterprise for granting access to The Halsary and Stoney Moor and the Lincolnshire Wildlife Trust for granting access to Kirkby Moor. Amelia Hunt contributed expert advice on the preparation of samples for isotopic analysis and Winnie Stein (SCRI) provided technical assistance in the laboratory analysis of [N] and 15N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Ellis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellis, C.J., Crittenden, P.D., Scrimgeour, C.M. et al. The natural abundance of 15N in mat-forming lichens. Oecologia 136, 115–123 (2003). https://doi.org/10.1007/s00442-003-1201-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-003-1201-z

Keywords

Navigation