Skip to main content
Log in

A comparative analysis of morphological and ecological characters of European aphids and lycaenids in relation to ant attendance

  • Community Ecology
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Ants are a major environmental factor for many insect species. For example, aphids and lycaenids have evolved an array of associations with ants ranging from obligate myrmecophily to the avoidance of contact. Here we (1) analyze the predictive power of different ecological and morphological traits for explaining the strength of the association between ants and aphids/lycaenids and (2) contrast different taxonomic levels with respect to the variance explained by ant attendance. Data come from a literature survey including 112 species of aphids and 103 species of lycaenids from Europe. For aphids, feeding on woody plant parts is positively associated with ant attendance, while a high degree of mobility, feeding in isolation, and the possession of wings in the adult stage are negatively associated with ant attendance. In lycaenids, feeding on inflorescences and feeding on Fabaceae host plants is closely associated with ant attendance, while living in forests bears a smaller likelihood to establish mutualistic relationships. Body size always appeared to be a poor predictor for the degree of ant attendance. Overall, in both insect groups less than 10% of the variation in the ecological traits recorded is explained by the different modes of ant association. When decomposing the variance in traits explained by ant attendance at different taxonomic levels, aphids and lycaenids show contrasting results. In aphids, most variance in the degree of ant attendance is explained at the subfamily level and least at the species level. The opposite is true for lycaenids, where most variance is explained at the lowest taxonomic level. Possible mechanisms explaining these different patterns of associations with ants are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  • Axén AH, Pierce NE (1998) Aggregation as a cost-reducing strategy for lycaenid larvae. Behav Ecol 9:109–115

    Google Scholar 

  • Baylis M, Pierce NE (1992) Lack of compensation by final instar larvae of the myrmecophilous lycaenid butterfly, Jalmenus evagorans, for the loss of nutrients to ants. Physiol Entomol 17:107–114

    Google Scholar 

  • Bink FA (1992) Ecologische atlas van de dagvlinders van Noordwest-Europa. Schuyt, Haarlem, The Netherlands

  • Blackman RL, Eastop VF (1994) Aphids on the world's trees. CAB International, Wallingford, UK

  • Börner C (1952) Europae Centralis Aphides. Mitt Thüring Bot Ges, Beiheft 3, vols 1, 2. Weimar

  • Braby MF (2000) Butterflies of Australia. Their identification, biology and distribution. 2 vols, CSIRO Publishing, Collingwood

  • Bristow CM (1991) Why are so few aphids ant-tended? In: Huxley CR, Cutler DF (eds) Ant–plant interactions. Oxford University Press, Oxford, pp 104–119

  • Bronstein JL (1994) Our current understanding of mutualism. Q Rev Biol 69:31–51

    Google Scholar 

  • Bronstein JL (2001) The exploitation of mutualism. Ecol Lett 4:277–287

    Article  Google Scholar 

  • Buckley RC (1987) Interactions involving plants, homoptera, and ants. Annu Rev Ecol Syst 18:111–135

    Article  Google Scholar 

  • Burghardt F, Fiedler K (1996) The influence of diet on growth and secretion behaviour of myrmecophilous Polyommatus icarus caterpillars (Lepidoptera: Lycaenidae). Ecol Entomol 21:1–8

    Google Scholar 

  • Cushman JH, Beattie AJ (1991) Mutualism: assessing the benefits to hosts and visitors. Trends Ecol Evol 6:193–195

    Google Scholar 

  • Cushman JH, Rashbrook VK, Beattie AJ (1994) Assessing benefits to both participants in a lycaenid–ant association. Ecology 75:1031–1041

    Google Scholar 

  • Dixon AFG (1958) Escape response shown by certain aphids to the presence of the cocinellid Adalia decempunctata (L.). Trans R Entomol Soc Lond 10:319–334

    Google Scholar 

  • Dixon AFG (1998) Aphid ecology. Chapman & Hall, London

  • Fiedler K (1991a) Systematic, evolutionary, and ecological implications of myrmecophily within the Lycaenidae (Insecta: Lepidoptera: Papilionidae). Bonn Zool Monogr 31:1–210

    Google Scholar 

  • Fiedler K (1991b) European and North West African Lycaenidae and their associations with ants. J Res Lepid 28:239–257

    Google Scholar 

  • Fiedler K (1995) Lycaenid butterflies and plants: is myrmecophily associated with particular hostplant preferences? Ethol Ecol Evol 7:107–132

    Google Scholar 

  • Fiedler K (1998a) Geographical patterns in life-history traits of Lycaenid butterflies – ecological and evolutionary implications. Zoology 100:336–347

    Google Scholar 

  • Fiedler K (1998b) Lycaenid–ant interactions of the Maculinea type: tracing their historical roots in a comparative framework. J Insect Conserv 2, 3–14

    Google Scholar 

  • Fiedler K (2001) Ants that associate with lycaenid butterfly larvae: diversity, ecology and biogeography. Divers Distrib 7:45–60

    Article  Google Scholar 

  • Fiedler K, Hölldobler B (1992) Ants and Polyommatus icarus immatures – sex-related developmental benefits and costs of ant attendance. Oecologia 91:468–473

    Google Scholar 

  • Fiedler K, Hummel V (1995) Myrmecophily in the brown argus butterfly, Aricia agestis (Lepidoptera: Lycaenidae): effects of larval age, ant number and persistence of contacts with ants. Zoology 99:128–137

    Google Scholar 

  • Fiedler K, Maschwitz U (1989) The symbiosis between the weaver ant Oecophylla smaragdina and Anthene emolus, an obligate myrmecophilous lycaenid butterfly. J Nat Hist 23:833–846

    Google Scholar 

  • Fisher MK, Shingleton AW (2001) Host plant and ants influence the honeydew sugar composition of aphids. Funct Ecol 15:544–550

    Article  Google Scholar 

  • Flatt T, Weisser WW (2000) The effects of mutualistic ants on aphid life-history traits. Ecology 81:3522–3529

    Google Scholar 

  • Harley R (1991) The greasy pole syndrome. In: Huxley CR, Cutler DF (eds) Ant–plant interactions. Oxford University Press, Oxford, pp 430–433

  • Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford University Press, Oxford

  • Hayamizu E (1982) Comparative studies on aggregations among aphids in relation to population dynamics. I. Colony formation and aggregation behavior of Brevicoryne brassicae L. and Myzus persicae (Sulzer) (Homoptera: Aphididae). Appl Entomol Zool 17:519–529

    Google Scholar 

  • Heie OE (1980) The Aphidoidea (Hemiptera) of Fennoscandia and Denmark. I) Fauna Entomol Scand 9:1–236

    Google Scholar 

  • Heie OE (1986) The Aphidoidea (Hemiptera) of Fennoscandia and Denmark III. Fauna Entomol Scand 17:1–314

    Google Scholar 

  • Heie OE (1987) Paleontology and phylogeny. In: Minks AK, Harrewijn P (eds) Aphids: Their biology, natural enemies, and control (2A). Elsevier, Amsterdam, pp 367–391

    Google Scholar 

  • Heie OE (1992) The Aphidoidea (Hemiptera) of Fennoscandia and Denmark IV. Fauna Entomol Scand 25:1–189

    Google Scholar 

  • Heie OE (1994) The Aphidoidea (Hemiptera) of Fennoscandia and Denmark V. Fauna Entomol Scand 28:1–242

    Google Scholar 

  • Herre EA, Knowlton N, Mueller UG, Rehner SA (1999) The evolution of mutualism: exploring the path between conflict and cooperation. Trends Ecol Evol 14:49–53

    Article  PubMed  Google Scholar 

  • Hesselbarth G, van Oorschot H, Wagener S (1995) Die Tagfalter der Türkei unter Berücksichtigung der angrenzenden Länder, 3 vols. Wagener, Bocholt

  • Higgins LG, Riley ND, Forster W (1978) Die Tagfalter Europas und Nordwestafrikas, 2nd edn. Parey, Hamburg

  • Hoeksema JD, Bruna EM (2000) Pursuing the big questions about interspecific mutualism: a review of theoretical approaches. Oecologia 125:321–330

    Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, Cambridge, Mass

  • Jolivet P (1996) Ants and plants: an example of coevolution (enlarged edition). Backhuys, Leiden, The Netherlands

    Google Scholar 

  • Kloft WJ, Kunkel H (1985) Waldtracht und Waldhonig in der Imkerei. Ehrenwirth, Munich

  • Machado CA, Jousselin E, Kjellberg F, Compton SG, Herre EA (2001) Phylogenetic relationships, historical biogeography and character evolution of fig-pollinating wasps. Proc R Soc Lond Ser B 268:685–694

    Article  CAS  Google Scholar 

  • Martinez-Torres D, Buades C, Latorre A, Moya A (2001) Molecular systematics of aphids and their primary endosymbionts. Mol Phylogenet Evol 20:437–449

    Article  CAS  PubMed  Google Scholar 

  • Mueller UG, Rehner SA, Schultz TR (1998) The evolution of agriculture in ants. Science 281:2034–2038

    Article  CAS  PubMed  Google Scholar 

  • Normak BB (2000) Molecular systematics and evolution of the aphid family Lachnidae. Mol Phylogenet Evol 14:131–140

    Article  PubMed  Google Scholar 

  • Offenberg J (2001) Balancing between mutualism and exploitation: the symbiotic interaction between Lasius ants and aphids. Behav Ecol Sociobiol 49:304–310

    Article  Google Scholar 

  • Pellmyr O, Leebens-Mack J (1999) Forty million years of mutualism: evidence for Eocene origin of yucca–yucca moth association. Proc Natl Acad Sci USA 96:9178–9183

    CAS  PubMed  Google Scholar 

  • Pierce NE (1985) Lycaenid butterflies and ants: selection for nitrogen fixing and other protein-rich food plants. Am Nat 125:888–895

    Article  Google Scholar 

  • Pierce NE (2002) Phylogeny and ecology of lycaenid/ant interactions. Proc 13th Eur Congr Lepidopterol, Korsør, p 49

  • Pierce NE, Elgar MA (1985) The influence of ants on the host plant selection by Jalmenus evagoras, a myrmecophilous lycaenid butterfly. Behav Ecol Sociobiol 16:209–222

    Google Scholar 

  • Pierce NE, Kitching RL, Buckley RC, Taylor MFJ, Benbow K (1987) Costs and benefits of cooperation between the Australian lycaenid butterfly, Jalmenus evagoras and its attendant ants. Behav Ecol Sociobiol 21:237–248

    Google Scholar 

  • Pierce NE, Braby MF, Heath A, Lohman DJ, Mathew J, Rand DB, Travassos MA (2002) The ecology and evolution of ant asociation in the Lycaenidae (Lepidoptera). Annu Rev Entomol 47:733–771

    Article  CAS  PubMed  Google Scholar 

  • Punttila P (1996) Succession, forest fragmentation, and the distribution of wood ants. Oikos 75:291–298

    Google Scholar 

  • Rosengren R, Sundström L (1991) The interaction between red wood ants, Cinara aphids, and pines. A ghost of mutualism past? In: Huxley CR, Cutler DF (eds) Ant–plant interactions. Oxford University Press, Oxford, pp 80–91

  • Sakata H (1995) Density-dependent predation of the ant Lasius niger (Hymenoptera: Formicidae) on two attended aphids Lachnus tropicalis and Myzocallis kuricola (Homoptera: Aphididae). Res Popul Ecol 37:159–164

    Google Scholar 

  • Sandström J, Moran N (1999) How nutritionally imbalanced is phloem sap for aphids? Entomol Exp Appl 91:203–210

    Article  Google Scholar 

  • Scheurer S (1964) Zur Biologie einiger Fichten bewohnender Lachnidenarten (Homopter, Aphidina). Z Angew Entomol 53:153–178

    Google Scholar 

  • Seufert P, Fiedler K (1996) Life-history diversity and local co-existence of three closely related lycaenid butterflies (Lepidoptera: Lycaenidae) in Malaysian rainforests. Zool Anz 234:229–239

    Google Scholar 

  • Southwood TRE (1986) Plant surface and insects – an overview. In: Juniper BE, Southwood TRE (eds) Insects and the plant surface. Arnold, London, pp 1–22

  • Stadler B (2002) Determinants of the size of aphid–parasitoid assemblages. J Appl Entomol 126:258–264

    Article  Google Scholar 

  • Stadler B, Fiedler K, Kawecki T, Weisser W (2001) Costs and benefits for phytophagous myrmecophiles: when ants are not always available. Oikos 92:467–478

    Google Scholar 

  • Stadler B, Dixon AFG, Kindlmann P (2002) Relative fitness of aphids: the effect of plant quality and ants. Ecol Lett 5:216–222

    Article  Google Scholar 

  • Sudd JH (1983) The distribution of foraging wood ants (Formica lugubris Zett.) in relation to the distribution of aphids. Insectes Soc 30:298–307

    Google Scholar 

  • Ter Braak CJF, Looman CWN (1994) Biplots in reduced-rank regression. Biom J 36:983–1003

    Google Scholar 

  • Ter Braak CJF, Šmilauer P (2002) CANOCO Reference manual and CanoDraw for Windows user's guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca, N.Y.

  • Thieme T, Müller FP (2000) Aphidina. In: Stresemann E (ed) Exkursionsfauna von Deutschland, vol 2, 9th edn. Spektrum Akad Verlag, Heidelberg, pp 169–237

  • Thompson JN (1994) The coevolutionary process. University of Chicago Press, Chicago, Ill

  • Tolman T, Lewington R (1998) Die Tagfalter Europas und Nordwestafrikas. Franckh-Kosmos, Stuttgart, 319 pp

  • Völkl W, Woodring J, Fischer M, Lorenz MW, Hoffmann KH (1999) Ant–aphid mutualism: the impact of honeydew production and honeydew sugar composition on ant preferences. Oecologia 118:483–491

    Google Scholar 

  • Way MJ (1963) Mutualism between ants and honeydew-producing Homoptera. Annu Rev Entomol 8:307–344

    Google Scholar 

  • Yao I, Akimoto S (2001) Ant attendance changes the sugar composition of the honeydew of the drepanosiphid aphid Tuberculatus quercicola. Oecologia 128:36–43

    Article  Google Scholar 

  • Yao I, Akimoto S (2002) Flexibility in the composition and concentration of amino acids in honeydew of the drepanosiphid aphid Tuberculatus quercicola. Ecol Entomol 27:745–752

    Article  Google Scholar 

Download references

Acknowledgements

Three anonymous reviewers helped to improve the manuscript. Financial support was provided to BS by the German Ministry for Research and Technology (Fördernummer: BMBF No. PT BEO 51-0339476D) and to PK by MSMT grant No. MSM 123100004. KF's work on myrmecophilous Lycaenidae was supported by the Deutsche Forschungsgemeinschaft (Fi 547/1-1, 1-2, Grako 678).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Stadler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stadler, B., Kindlmann, P., Šmilauer, P. et al. A comparative analysis of morphological and ecological characters of European aphids and lycaenids in relation to ant attendance. Oecologia 135, 422–430 (2003). https://doi.org/10.1007/s00442-003-1193-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-003-1193-8

Keywords

Navigation