Skip to main content
Log in

Host plant effects on parasitoid attack on the leaf beetle Chrysomela lapponica

  • Plant Animal Interactions
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Larvae of the leaf beetle Chrysomela lapponica obtain salicyl glucosides (SGs) from the host plant to produce a defensive secretion with salicylaldehyde. In northern Russia, larvae and pupae experience high parasitism by the phorid fly Megaselia opacicornis and tachinid fly Cleonice nitidiuscula. We compared the suitability of the SG-rich Salix borealis and SG-poor S. caprea and S. phylicifolia to Ch. lapponica and tested whether enemy pressure on Ch. lapponica varies among host species that differ in SG content. In the laboratory, survival of Ch. lapponica larvae was higher on S. borealis than on S. caprea and S. phylicifolia, while adult body mass was higher on S. borealis and S. caprea than on S. phylicifolia. In the field, parasitism by both M. opacicornis and Cl. nitidiuscula was greater on beetles from S. borealis than from the SG-poor S. caprea or S. phylicifolia. In a laboratory choice test, the pupal parasitoid M. opacicornis laid similar numbers of eggs on beetles reared on SG-rich and SG-poor willows, suggesting that the host plant-derived defence is not effective against this parasitoid. In a field enemy-exclusion experiment, beetle survival was greatly enhanced by the exclusion of enemies, but survival rates did not differ between S. borealis and S. caprea, although larvae developed faster on S. borealis. On the other hand, parasitism and predation were observed more often on S. borealis than on S. caprea. Thus, beetle larvae perform better but also suffer higher predation and parasitism on S. borealis than on SG-poor willows. Ch. lapponica does not appear to obtain enemy-free space by feeding on SG-rich willow species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–C.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • Ballabeni P, Wlodarczyk M, Rahier M (2001) Does enemy-free space for eggs contribute to a leaf beetle's oviposition preference for nutritionally inferior host plant? Funct Ecol 15:318–324

    Article  Google Scholar 

  • Baur R, Rank NE (1996) Influence of host quality and natural enemies on the life history of the alder leaf beetles Agelastica alni and Linaeidea aenea. In: Jolivet PH, Cox ML (eds) Chrysomelidae biology, vol 2. Ecological studies. SPB, Amsterdam, pp 173–194

  • Benrey B, Callejas A, Rios L, Oyama K, Denno RF (1998) The effects of domestication of Brassica and Phaseolus on the interaction between phytophagous insects and parasitoids. Biol Contr 11:130–140

    Article  Google Scholar 

  • Berdegue M, Trumble JT, Hare JD, Redak RA (1996) Is it enemy-free space? The evidence for terrestrial insects and freshwater arthropods. Ecol Entomol 21:203–217.

    Google Scholar 

  • Bernays EA (1988) Host specificity in phytophagous insects: selection pressure from generalist predators. Entomol Exp Appl 49:131–140

    Google Scholar 

  • Bernays E, Graham M (1988) On the evolution of host specificity in phytophagous arthropods. Ecology 69:886–892

    Google Scholar 

  • Blumberg D (1991) Seasonal variations in the encapsulation of eggs of the encyrtid parasitoid Metaphycus stanleyi by the pyriform scale, Protopulvinaria pyriformis. Entomol Exp Appl 58:231–237

    Google Scholar 

  • Blumberg D (1997) Parasitoid encapsulation as a defence mechanism in the coccoidea (Homoptera) and its importance in biological control. Biol Contr 8:225–236

    Article  Google Scholar 

  • Bourchier RS (1991) Growth and development of Compsilura concinnata (Meigan) (Diptera: Tachinidae) parasitizing gypsy moth larvae feeding on tannin diets. Can Entomol 123:1047–1056

    Google Scholar 

  • Burkot TR, Benjamin DM (1979) The biology and ecology of the cottonwood leaf beetle, Chrysomela scripta (Coleoptera: Chrysomelidae), on tissue cultured hybrid Aigeiros (Populus × euramericana) subclones in Wisconsin. Can Entomol 111:551–556

    Google Scholar 

  • Campbell CAM, Duffy SS (1979) Tomatine and parasitic wasps: potential incompatibility of plant antibiosis with biological control. Science 205:700–702

    CAS  Google Scholar 

  • Charnov EL, Skinner SW (1984) Evolution of host selection and clutch size in parasitoid wasps. Fla Entomol 67:5–21

    Google Scholar 

  • Cox ML (1994) The Hymenoptera and Diptera parasitoids of Chrysomelidae. In: Jolivet PH, Cox ML, Petitpierre E (eds) Novel aspects of the biology of Chrysomelidae. Kluwer, Dordrecht, pp 419–467

  • Denno RF, Larsson S, Olmstead KL (1990) Role of enemy-free space and plant quality in host-plant selection by willow beetles. Ecology 71:124–137

    Google Scholar 

  • Devantoy J (1948) Les Prédateurs et les parasites de la chrysomèle du peuplier. Feuille Nat 3:85–89

    Google Scholar 

  • Dicke M, van Poecke MP (2002) Signalling in plant–insect interactions: signal transduction in direct and indirect plant defence. In: Scheel D, Wasternack C (eds) Plant signal transduction. Oxford University Press, New York, pp 289–316

  • Disney RHL, Zvereva EL, Mostovski MB (2001) A scuttle fly (Diptera: Phoridae) parasitizing a beetle (Coleoptera: Chrysomelidae) in Russia. Entomol Fenn 12:59–63

    Google Scholar 

  • English-Loeb GM, Brody AK, Karban R (1993) Host-plant-mediated interactions between a generalist foliavore and its tachinid parasitoid. J Anim Ecol 62:465–471

    Google Scholar 

  • Feder JL (1995) The effects of parasitoids on sympatric host races of Rhagoletis pomonella (Diptera: Tephritidae). Ecology 76:801–813

    Google Scholar 

  • Godfray HCJ (1994) Parasitoids. Behavioural and evolutionary ecology. Princeton University Press, Princeton, N.J.

  • Gratton C, Welter SC (1999) Does "enemy-free space" exist? Experimental host shifts of an herbivorous fly. Ecology 80:773–785

    Google Scholar 

  • Gross J (2001) On the evolution of host plant specialization in leaf beetles (Coleoptera: Chrysomelina). Inaugural-dissertation zur Erlangung des Doktorgrades. Institut für Biology — Angewandte Zoologie/Ökologie der Tiere, Freien Universität Berlin, Logos, Berlin

    Google Scholar 

  • Gross J, Hilker M (1995) Chemoecological studies of the exocrine glandular larval secretion of two chrysomelid species (Coleoptera): Phaedon cochleariae and Chrysomela lapponica. Chemoecology 5/6:185–189

  • Gruenhagen NM, Perring TM (2001) Plant influences on silverleaf whitefly oviposition and development and the potential for enemy-free space. Entomol Exp Appl 99:387–391

    Google Scholar 

  • Hilker M, Schulz S (1994) Composition of larval secretion of Chrysomela lapponica (Coleoptera, Chrysomelidae) and its dependence on host plant. J Chem Ecol 20:1075–1093

    CAS  Google Scholar 

  • Horton DR (1989) Performance of a willow-feeding beetle, Chrysomela knabi Brown, as affected by host species and dietary moisture. Can Entomol 121:777–780

    Google Scholar 

  • Jeffries MJ, Lawton J (1984) Enemy free space and the structure of ecological communities. Biol J Linn Soc 23:269–286

    Google Scholar 

  • Jervis MA, Copland MJV (1996) The life cycle. In: Jervis M, Kidd N (eds) Insect natural enemies: practical approaches to their study and evaluation. Chapman and Hall, London, pp 63–161

    Google Scholar 

  • Julkunen-Tiitto R (1989a) Distribution of certain phenolics in Salix species (Salicaceae). Univ Joensuu Publ Sci 15:1–19

    Google Scholar 

  • Julkunen-Tiitto R (1989b) Phenolic constituents of Salix: a chemotaxonomic survey of further Finnish species. Phytochemistry 28:2115–2125

    Article  CAS  Google Scholar 

  • Kanervo V (1939) Beobachtungen und Versuche zur Ermittlung der Nahrung einiger Coccinelliden (Col.). Ann Entomol Fenn 5:89–110

    Google Scholar 

  • Kanervo V (1946) Tutkimuksia lepän lehtikuoriaisen, Melasoma aenea L. (Col., Chrysomelidae), luontaisista vihollisista.. Ann Zool Soc Zool Bot Fenn Vanamo 12:1–202

    Google Scholar 

  • Keese MC (1997) Does escape to enemy-free space explain host specialization in two closely related leaf-feeding beetles (Coleoptera: Chrysomelidae)? Oecologia 112:81–86

    Article  Google Scholar 

  • Kolehmainen J, Julkunen-Tiitto R, Roininen H, Tahvanainen J (1995) Phenolic glucosides as feeding cues for willow–feeding leaf beetles. Entomol Exp Appl 74:235–243

    CAS  Google Scholar 

  • Köpf A, Rank N, Roininen H, Tahvanainen J (1997) Defensive larval secretions of leaf beetles attract a specialist predator Parasyrphus nigritarsis. Ecol Entomol 22:176–183

    Google Scholar 

  • Köpf A, Rank NE, Roininen H, Julkunen-Tiitto R, Pasteels JM, Tahvanainen J (1998) Phylogeny and the evolution of host plant use and sequestration in the willow leaf beetle genus Phratora (Coleoptera: Chrysomelidae). Evolution 52:517–528

    Google Scholar 

  • Kruse JJ, Raffa KF (1999) Effect of food plant switching by a herbivore on its parasitoid: Cotesia melanoscela development in Lymantria dispar exposed to reciprocal dietary crosses. Ecol Entomol 24:37–45

    Article  Google Scholar 

  • Lawton JH (1986) The effect of parasitoids on phytophagous insect communities. In: Waage J, Greathead D (eds) Insect parasitoids. Academic Press, London, pp 265–289

  • Lundvall P, Neuvonen S, Halonen M (1998) Interspecific differences in the susceptibility of adult leaf beetles (Coleoptera: Chrysomelidae) to predation by willow warbles (Phylloscopus trochilus). Rep Kevo Subarct Res Stn 22:19–24

    Google Scholar 

  • Ohsaki N, Sato Y (1990) Avoidance mechanisms of three Pieris butterfly species against the parasitoid wasp Apanteles glomeratus. Ecol Entomol 15:169–176

    Google Scholar 

  • Oppenheim AJ, Gould F (2002) Behavioral adaptations increase the value of enemy free space for Heliothis subflexa, a specialist herbivore. Evolution 56:679–689

    PubMed  Google Scholar 

  • Palokangas P, Neuvonen S (1992) Differences between species and instars of leaf beetles in the probability to be preyed on. Ann Zool Fenn 29:273–278

    Google Scholar 

  • Paré PW, Lewis WJ, Tumlinson JH (1999) Induced plant volatiles: biochemistry and effects on parasitoids. In: Agrawal AA, Tuzun S, Bent E (eds) Induced plant defenses against pathogens and herbivores. APS, St. Paul, Minn., pp 167–180

  • Pasteels JM, Gregoire JC, Rowell–Rahier M (1983a) The chemical ecology of defense in arthropods. Annu Rev Entomol 28:263–289

    CAS  Google Scholar 

  • Pasteels JM, Rowell-Rahier M, Braekman JC, Dupont A (1983b) Salicin from host plant as precursor of salicylaldehyde in defensive secretion of chrysomeline larvae. Physiol Entomol 8:307–314

    CAS  Google Scholar 

  • Petitt FL, Wietlisbach DO (1995) Effects of host instar and size on parasitization efficiency and life history parameters of Opius dissitus. Entomol Exp Appl 66:227–236

    Google Scholar 

  • Price PW, Bouton CE, Gross P, McPheron BA, Thompson JN, Weis AE (1980) Interactions among three trophic levels: influence of plants on interactions between insect herbivores and natural enemies. Annu Rev Ecol Syst 11:41–65

    Google Scholar 

  • Rank NE (1992) Host plant preference based on salicylate chemistry in a willow leaf beetle (Chrysomela aeneicollis). Oecologia 90:95–101

    Google Scholar 

  • Rank NE (1994) Host plant effects on larval survival in a salicin–using leaf beetle Chrysomela aeneicollis (Coleoptera: Chrysomelidae). Oecologia 97:342–353

    Google Scholar 

  • Rank NE, Smiley JT (1994) Host-plant effects on Parasyrphus melanderi Curran (Diptera: Syrphidae) feeding on a willow leaf beetle Chrysomela aeneicollis Schaeffer (Coleoptera: Chrysomelidae). Ecol Entomol 19:31–38

    Google Scholar 

  • Rank NE, Smiley JT, Köpf A (1996) Natural enemies and host plant relationships for chrysomeline leaf beetles feeding on Salicaceae. In: Jolivet PH, Cox ML (eds) Chrysomelidae biology, vol 2: Ecological studies. SPB, Amsterdam, pp 147–171

    Google Scholar 

  • Rank NE, Köpf A, Julkunen-Tiitto R, Tahvanainen J (1998) Host preference and larval performance of the salicylate-using leaf beetle Phratora vitellinae. Ecology 79:618–631

    Google Scholar 

  • Richter VA, Zvereva EL (1996) The tachinid species Cleonice nitidiuscula Zetterstedt new for fauna of Murmansk Province (Diptera: Tachinidae). Zoosyst Ross 6:202

    Google Scholar 

  • Rowell-Rahier M, Pasteels JM (1982) The significance of salicin for a Salix-feeder, Phratora (Phyllodecta) vitellinae. In: Visser JH, Minks AK (eds) Proceedings of the 5th International Symposium on Insect-Plant Relationships. Pudoc, Wageningen, pp 73–79

  • Salt G (1963) The defense reactions of insects to metazoan parasites. Parasitology 53:527–642

    CAS  Google Scholar 

  • Schulz S, Gross J, Hilker M (1997) Origin of defensive secretion of the leaf beetle Chrysomela lapponica. Tetrahedron 53:9203–9212

    Article  CAS  Google Scholar 

  • Sears ALW, Smiley JT, Hilker M, Muller F, Rank NE (2001) Nesting behavior and prey use in two geographically separated populations of the specialist wasp Symmorphus cristatus (Vespidae: Eumeninae). Am Midl Nat 145:233–246

    Google Scholar 

  • Sequeira R, Mackauer M (1992) Nutritional ecology of an insect host–parasitoid association: the pea-aphid-Aphidius ervi system. Ecology 73:183–189

    Google Scholar 

  • Smiley JT, Horn JH, Rank NE (1985) Ecological effects of salicin at three trophic levels: new problems from old adaptations. Science 229:649–651

    CAS  Google Scholar 

  • Stamp N (2001) Enemy-free space via host plant chemistry and dispersion: assessing the influence of tri-trophic interactions. Oecologia 128:153–163

    Article  Google Scholar 

  • Tahvanainen J, Julkunen-Tiitto R, Kettunen J (1985b) Phenolic glycosides govern the food selection pattern of willow feeding leaf beetles. Oecologia 67:52–56

    Google Scholar 

  • Termonia A, Hsiao TH, Pasteels JM, Milinkovitch MC (2001) Feeding specialization and host-derived chemical defense in Chrysomeline leaf beetles did not lead to an evolutionary dead end. Proc Natl Acad Sci USA 98:3909–3914

    Article  CAS  PubMed  Google Scholar 

  • Thompson JN (1988a) Evolutionary ecology of the relationship between oviposition preference and performance of offspring in phytophagous insects. Entomol Exp Appl 47:3–14

    Google Scholar 

  • Thompson JN (1988b) Evolutionary genetics of oviposition preference in swallowtail butterflies. Evolution 42:1223–1234

    Google Scholar 

  • Topp W, Beracz P, Zimmerman K (1989) Distribution pattern, fecundity, development, and survival of Melasoma vigintipunctata (Scop.) (Coleoptera: Chrysomelidae). Entomography 6:355–371

    Google Scholar 

  • Turlings TCJ, Benrey B (1998) Effects of plant metabolites on behavior and development of parasitic wasps. Ecoscience 5:1–13

    Google Scholar 

  • Turlings TCJ, Tumlinson JH, Lewis WJ, Vet LEM (1990) Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250:1251–1253

    CAS  Google Scholar 

  • Van den Bosch R (1964) Encapsulation of eggs of Bathyplectes curculionis (Thompson) (Hymenoptera: Ichneumonidae) in larvae of Hypera brunneipennis (Boheman) and Hypera postica (Gyllenhal) (Coleoptera, Curculionidae). J Insect Pathol 6:343–367

    Google Scholar 

  • Vet LEM, Dicke M (1992) Ecology of infochemical use by natural enemies in a tritrophic context. Annu Rev Entomol 37:141–172

    Article  Google Scholar 

  • Wallace JB, Blum MS (1969) Refined defensive mechanisms in Chrysomela scripta. Ann Entomol Soc Am 62:503–506

    CAS  Google Scholar 

  • Wen B, Weaver DK, Brower JH (1995) Size preference and sex ration for Pteromalus cerealellae (Hymenoptera: Pteromalidae). Environ Entomol 24:1160–1166

    Google Scholar 

  • Williams IS, Jones TH, Hartley SE (2001) The role of resources and natural enemies in determining the distribution of an insect herbivore population. Ecol Entomol 26:204–211

    Article  Google Scholar 

  • Yamaga Y, Ohgushi T (1999) Preference–performance linkage in a herbivorous lady beetle: Consequences of variability of natural enemies. Oecologia 119:183–190

    Article  Google Scholar 

  • Zvereva EL, Kozlov MV (2000) Effects of air pollution on natural enemies of the leaf beetle Melasoma lapponica. J Appl Ecol 37:298–308

    Article  Google Scholar 

  • Zvereva EL, Kozlov MV, Neuvonen S (1995a) Decrease of feeding niche breadth of Melasoma lapponica (Coleoptera: Chrysomelidae) with increase of pollution. Oecologia 104:323–329

    Google Scholar 

  • Zvereva EL, Kozlov MV, Neuvonen S (1995b) Population density and performance of Melasoma lapponica (Coleoptera: Chrysomelidae) in surroundings of a smelter complex. Environ Entomol 24:707–715

    Google Scholar 

  • Zvereva EL, Kozlov MV, Haukioja E (1997) Population dynamics of a herbivore in an industrially modified landscape: case study with Melasoma lapponica (Coleoptera: Chrysomelidae). Acta Phytopathol Entomol Hung 32:251–258

    Google Scholar 

Download references

Acknowledgements

We thank V. Zverev for assistance in the fieldwork and R. H. L. Disney and V. Richter for the discussions on parasitoid biology. We are very grateful to E. Dahlhoff, M. Kozlov, S. Neuvonen, H. Roininen, J. Tahvanainen and three anonymous reviewers for valuable comments on earlier drafts of the manuscripts. This study was financially supported by the Maj and Tor Nessling Foundation and the Turku University Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. L. Zvereva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zvereva, E.L., Rank, N.E. Host plant effects on parasitoid attack on the leaf beetle Chrysomela lapponica . Oecologia 135, 258–267 (2003). https://doi.org/10.1007/s00442-003-1184-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-003-1184-9

Keywords

Navigation