Skip to main content

Advertisement

Log in

Hutchinson-Gilford progeria patient-derived cardiomyocyte model of carrying LMNA gene variant c.1824 C > T

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Cardiovascular diseases, atherosclerosis, and strokes are the most common causes of death in patients with Hutchinson-Gilford progeria syndrome (HGPS). The LMNA variant c.1824C > T accounts for ~ 90% of HGPS cases. The detailed molecular mechanisms of Lamin A in the heart remain elusive due to the lack of appropriate in vitro models. We hypothesize that HGPS patient’s induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iCMCs) will provide a model platform to study the cardio-pathologic mechanisms associated with HGPS. To elucidate the effects of progerin in cardiomyocytes, we first obtained skin fibroblasts (SFs) from a de-identified HGPS patient (hPGP1, proband) and both parents from the Progeria Research Foundation. Through Sanger sequencing and restriction fragment length polymorphism, with the enzyme EciI, targeting Lamin A, we characterized hPGP1-SFs as heterozygous mutants for the LMNA variant c.1824 C > T. Additionally, we performed LMNA exon 11 bisulfite sequencing to analyze the methylation status of the progeria cells. Furthermore, we reprogrammed the three SFs into iPSCs and differentiated them into iCMCs, which gained a beating on day 7. Through particle image velocimetry analysis, we found that hPGP1-iCMCs had an irregular contractile function and decreased cardiac-specific gene and protein expressions by qRT-PCR and Western blot. Our progeria-patient-derived iCMCs were found to be functionally and structurally defective when compared to normal iCMCs. This in vitro model will help in elucidating the role of Lamin A in cardiac diseases and the cardio-pathologic mechanisms associated with progeria. It provides a new platform for researchers to study novel treatment approaches for progeria-associated cardiac diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets used or analyzed in this study and the reprogrammed cells are available from the corresponding author on reasonable request.

References

  • Benzoni P, Campostrini G, Landi S, Bertini V, Marchina E, Iascone M, Ahlberg G, Olesen MS, Crescini E, Mora C, Bisleri G, Muneretto C, Ronca R, Presta M, Poliani PL, Piovani G, Verardi R, Di Pasquale E, Consiglio A, Dell’Era P (2019) Human iPSC modelling of a familial form of atrial fibrillation reveals a gain of function of If and ICaL in patient-derived cardiomyocytes. Cardiovasc Res 116(6):1147–1160. https://doi.org/10.1093/cvr/cvz217

    Article  CAS  PubMed Central  Google Scholar 

  • Bishop WR, Doll R, Kirschmeier P (2011) 15 - Farnesyl Transferase inhibitors: from targeted cancer therapeutic to a potential treatment for progeria. In: Tamanoi F, Hrycyna CA, Bergo MO (eds) The Enzymes, vol 29. Academic Press, pp 275–303

    Google Scholar 

  • Bolderson E, Burgess JT, Li J, Gandhi NS, Boucher D, Croft LV, Beard S, Plowman JJ, Suraweera A, Adams MN, Naqi A, Zhang SD, Sinclair DA, O’Byrne KJ, Richard DJ (2019) Barrier-to-autointegration factor 1 (Banf1) regulates poly [ADP-ribose] polymerase 1 (PARP1) activity following oxidative DNA damage. Nat Commun 10(1):5501. https://doi.org/10.1038/s41467-019-13167-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonne G, Barletta MRD, Varnous S, Bécane H-M, Hammouda E-H, Merlini L, Muntoni F, Greenberg CR, Gary F, Urtizberea J-A (1999) Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat Genet 21(3):285–288

    Article  CAS  PubMed  Google Scholar 

  • Brodsky GL, Muntoni F, Miocic S, Sinagra G, Sewry C, Mestroni L (2000) Lamin A/C gene mutation associated with dilated cardiomyopathy with variable skeletal muscle involvement. Circulation 101(5):473–476

    Article  CAS  PubMed  Google Scholar 

  • Burgess JT, Cheong CM, Suraweera A, Sobanski T, Beard S, Dave K, Rose M, Boucher D, Croft LV, Adams MN, O’Byrne K, Richard DJ, Bolderson E (2021) Barrier-to-autointegration-factor (Banf1) modulates DNA double-strand break repair pathway choice via regulation of DNA-dependent kinase (DNA-PK) activity. Nucleic Acids Res 49(6):3294–3307. https://doi.org/10.1093/nar/gkab110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cattin M-E, Muchir A, Bonne G (2013) ‘State-of-the-heart’ of cardiac laminopathies. Curr Opin Cardiol 28(3):297–304. https://doi.org/10.1097/HCO.0b013e32835f0c79

    Article  PubMed  Google Scholar 

  • Chen CY, Chi YH, Mutalif RA, Starost MF, Myers TG, Anderson SA, Stewart CL, Jeang KT (2012) Accumulation of the inner nuclear envelope protein Sun1 is pathogenic in progeric and dystrophic laminopathies. Cell 149(3):565–577. https://doi.org/10.1016/j.cell.2012.01.059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen ZJ, Wang WP, Chen YC, Wang JY, Lin WH, Tai LA, Liou GG, Yang CS, Chi YH (2014) Dysregulated interactions between lamin A and SUN1 induce abnormalities in the nuclear envelope and endoplasmic reticulum in progeric laminopathies. J Cell Sci 127(Pt 8):1792–1804. https://doi.org/10.1242/jcs.139683

    Article  CAS  PubMed  Google Scholar 

  • Cheng CJ, Wu YC, Shu JA, Ling TY, Kuo HC, Wu JY, Chang EE, Chang SC, Huang YH (2007) Aberrant expression and distribution of the OCT-4 transcription factor in seminomas. J Biomed Sci 14(6):797–807. https://doi.org/10.1007/s11373-007-9198-7

    Article  CAS  PubMed  Google Scholar 

  • Czirok A, Isai DG, Kosa E, Rajasingh S, Kinsey W, Neufeld Z, Rajasingh J (2017) Optical-flow based non-invasive analysis of cardiomyocyte contractility. Sci Rep 7(1):1–11

    Article  Google Scholar 

  • Dharmaraj T, Guan Y, Liu J, Badens C, Gaborit B, Wilson KL (2019) Rare BANF1 alleles and relatively frequent EMD alleles including ‘healthy lipid’ emerin p.D149H in the ExAC cohort. Front Cell Dev Biol 7:48. https://doi.org/10.3389/fcell.2019.00048

    Article  PubMed  PubMed Central  Google Scholar 

  • Dhillon S (2021) Lonafarnib: first approval. Drugs 81(2):283–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eriksson M, Brown WT, Gordon LB, Glynn MW, Singer J, Scott L, Erdos MR, Robbins CM, Moses TY, Berglund P (2003) Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature 423(6937):293–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fatkin D, MacRae C, Sasaki T, Wolff MR, Porcu M, Frenneaux M, Atherton J, Vidaillet HJ Jr, Spudich S, De Girolami U (1999) Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N Engl J Med 341(23):1715–1724

    Article  CAS  PubMed  Google Scholar 

  • Gilford H (1904) Progeria: a form of senilism. Practitioner 73:188–217

    Google Scholar 

  • Gonzalez JM, Pla D, Perez-Sala D, Andres V (2011) A-type lamins and Hutchinson-Gilford progeria syndrome: pathogenesis and therapy

  • Gordon LB (2010) The premature aging syndrome Hutchinson-Gilford progeria: insights into normal aging. In Brocklehurst's Textbook of Geriatric Medicine and Gerontology. Elsevier, pp 66–72

    Chapter  Google Scholar 

  • Gordon LB, Rothman FG, López-Otín C, Misteli T (2014) Progeria: a paradigm for translational medicine. Cell 156(3):400–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon LB, Shappell H, Massaro J, D’Agostino RB, Brazier J, Campbell SE, Kleinman ME, Kieran MW (2018) Association of lonafarnib treatment vs no treatment with mortality rate in patients with Hutchinson-Gilford progeria syndrome. JAMA 319(16):1687–1695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurusamy N, Rajasingh S, Sigamani V, Rajasingh R, Isai DG, Czirok A, Bittel D, Rajasingh J (2021) Noonan syndrome patient-specific induced cardiomyocyte model carrying SOS1 gene variant c.1654A>G. Exp Cell Res 400(1):112508. https://doi.org/10.1016/j.yexcr.2021.112508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haque F, Lloyd DJ, Smallwood DT, Dent CL, Shanahan CM, Fry AM, Trembath RC, Shackleton S (2006) SUN1 interacts with nuclear lamin A and cytoplasmic nesprins to provide a physical connection between the nuclear lamina and the cytoskeleton. Mol Cell Biol 26(10):3738–3751. https://doi.org/10.1128/mcb.26.10.3738-3751.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haque F, Mazzeo D, Patel JT, Smallwood DT, Ellis JA, Shanahan CM, Shackleton S (2010) Mammalian SUN protein interaction networks at the inner nuclear membrane and their role in laminopathy disease processes. J Biol Chem 285(5):3487–3498. https://doi.org/10.1074/jbc.M109.071910

    Article  CAS  PubMed  Google Scholar 

  • Hasselberg NE, Haland TF, Saberniak J, Brekke PH, Berge KE, Leren TP, Edvardsen T, Haugaa KH (2017) Lamin A/C cardiomyopathy: young onset, high penetrance, and frequent need for heart transplantation. Eur Heart J 39(10):853–860. https://doi.org/10.1093/eurheartj/ehx596

    Article  PubMed Central  Google Scholar 

  • Hennekam RC (2006) Hutchinson-Gilford progeria syndrome: review of the phenotype. Am J Med Genet A 140(23):2603–2624. https://doi.org/10.1002/ajmg.a.31346

    Article  CAS  PubMed  Google Scholar 

  • Hutchinson J (1886a) Congenital absence of hair and mammary glands with atrophic condition of the skin and its appendages, in a boy whose mother had been almost wholly bald from alopecia areata from the age of six. Med Chir Trans 69:473–477. https://doi.org/10.1177/095952878606900127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutchinson J (1886b) Congenital absence of hair and mammary glands with atrophic condition of the skin and its appendages, in a boy whose mother had been almost wholly bald from alopecia areata from the age of six. Med Chir Trans 69:473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kychygina A, Dall’Osto, M., Allen, J. A., Cadoret, J.-C., Piras, V., Pickett, H. A., & Crabbe, L. (2021) Progerin impairs 3D genome organization and induces fragile telomeres by limiting the dNTP pools. Sci Rep 11(1):1–20

    Article  Google Scholar 

  • Loo TH, Ye X, Chai RJ, Ito M, Bonne G, Ferguson-Smith AC, Stewart CL (2019) The mammalian LINC complex component SUN1 regulates muscle regeneration by modulating drosha activity. Elife 8. https://doi.org/10.7554/eLife.49485

  • Mattioli E, Columbaro M, Capanni C, Maraldi NM, Cenni V, Scotlandi K, Marino MT, Merlini L, Squarzoni S, Lattanzi G (2011) Prelamin A-mediated recruitment of SUN1 to the nuclear envelope directs nuclear positioning in human muscle. Cell Death Differ 18(8):1305–1315. https://doi.org/10.1038/cdd.2010.183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meta M, Yang SH, Bergo MO, Fong LG, Young SG (2006) Protein farnesyltransferase inhibitors and progeria. Trends Mol Med 12(10):480–487. https://doi.org/10.1016/j.molmed.2006.08.006

    Article  CAS  PubMed  Google Scholar 

  • Muchir A, Bonne G, van der Kooi AJ, van Meegen M, Baas F, Bolhuis PA, de Visser M, Schwartz K (2000) Identification of mutations in the gene encoding lamins A/C in autosomal dominant limb girdle muscular dystrophy with atrioventricular conduction disturbances (LGMD1B). Hum Mol Genet 9(9):1453–1459

    Article  CAS  PubMed  Google Scholar 

  • Muchir A, Pavlidis P, Decostre V, Herron AJ, Arimura T, Bonne G, Worman HJ (2007) Activation of MAPK pathways links LMNA mutations to cardiomyopathy in Emery-Dreifuss muscular dystrophy. J Clin Investig 117(5):1282–1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Östlund C, Chang W, Gundersen GG, Worman HJ (2019) Pathogenic mutations in genes encoding nuclear envelope proteins and defective nucleocytoplasmic connections. Exp Biol Med (maywood) 244(15):1333–1344. https://doi.org/10.1177/1535370219862243

    Article  CAS  PubMed  Google Scholar 

  • Paquet N, Box JK, Ashton NW, Suraweera A, Croft LV, Urquhart AJ, Bolderson E, Zhang SD, O’Byrne KJ, Richard DJ (2014) Néstor-Guillermo progeria syndrome: a biochemical insight into barrier-to-autointegration factor 1, alanine 12 threonine mutation. BMC Mol Biol 15:27. https://doi.org/10.1186/s12867-014-0027-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perepelina K, Zaytseva A, Khudiakov A, Neganova I, Vasichkina E, Malashicheva A, Kostareva A (2022) LMNA mutation leads to cardiac sodium channel dysfunction in the Emery-Dreifuss muscular dystrophy patient. Front Cardiovasc Med 9:932956. https://doi.org/10.3389/fcvm.2022.932956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollex R, Hegele RA (2004) Hutchinson-Gilford progeria syndrome. Clin Genet 66(5):375–381

    Article  CAS  PubMed  Google Scholar 

  • Prakash A, Gordon LB, Kleinman ME, Gurary EB, Massaro J, D’Agostino R, Kieran MW, Gerhard-Herman M, Smoot L (2018) Cardiac abnormalities in patients with Hutchinson-Gilford progeria syndrome. JAMA Cardiol 3(4):326–334

    Article  PubMed  PubMed Central  Google Scholar 

  • Puente XS, Quesada V, Osorio FG, Cabanillas R, Cadiñanos J, Fraile JM, Ordóñez GR, Puente DA, Gutiérrez-Fernández A, Fanjul-Fernández M, Lévy N, Freije JM, López-Otín C (2011) Exome sequencing and functional analysis identifies BANF1 mutation as the cause of a hereditary progeroid syndrome. Am J Hum Genet 88(5):650–656. https://doi.org/10.1016/j.ajhg.2011.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajasingh S, Thangavel J, Czirok A, Samanta S, Roby KF, Dawn B, Rajasingh J (2015) Generation of functional cardiomyocytes from efficiently generated human iPSCs and a novel method of measuring contractility. PLoS ONE 10(8)

    Article  PubMed  PubMed Central  Google Scholar 

  • Sánchez-López A, Espinós-Estévez C, González-Gómez C, Gonzalo P, Andrés-Manzano MJ, Fanjul V, Riquelme-Borja R, Hamczyk MR, Macías Á, Del Campo L (2021) Cardiovascular progerin suppression and lamin A restoration rescue Hutchinson-Gilford progeria syndrome. Circulation 144(22):1777–1794

    Article  PubMed  PubMed Central  Google Scholar 

  • Ullrich NJ, Gordon LB (2015) Hutchinson-Gilford progeria syndrome. Handb Clin Neurol 132:249–264

    Article  PubMed  Google Scholar 

  • Zangrossi S, Marabese M, Broggini M, Giordano R, D’Erasmo M, Montelatici E, Intini D, Neri A, Pesce M, Rebulla P, Lazzari L (2007) Oct-4 expression in adult human differentiated cells challenges its role as a pure stem cell marker. Stem Cells 25(7):1675–1680. https://doi.org/10.1634/stemcells.2006-0611

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported in part by the American Heart Association–Transformational Project Award 20TPA35490215 to JR, National Institute of Health R01 grant HL141345 to JR, and the American Heart Association postdoctoral award 952237 to SP.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, J.R., SP.; methodology, S.R., V.S., S.P., A.C.; validation and formal analysis, SP., S.R, V.S.; writing—original draft preparation, V.S., S.P.; writing—review and editing, J.R., S.P., S.R.; supervision, J.R.; project administration, S.R., J.R; funding acquisition, J.R. All authors have read and agreed to the current version of the manuscript.

Corresponding author

Correspondence to Johnson Rajasingh.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 20 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perales, S., Sigamani, V., Rajasingh, S. et al. Hutchinson-Gilford progeria patient-derived cardiomyocyte model of carrying LMNA gene variant c.1824 C > T. Cell Tissue Res 394, 189–207 (2023). https://doi.org/10.1007/s00441-023-03813-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-023-03813-2

Keywords

Navigation