Skip to main content
Log in

Expression patterns of sex steroid receptors in developing mesonephros of the male mouse: three-dimensional analysis

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The androgen pathway via androgen receptor (AR) has received the most attention for development of male reproductive tracts. The estrogen pathway through estrogen receptor (ESR1) is also a major contributor to rete testis and efferent duct formation, but the role of progesterone via progesterone receptor (PGR) has largely been overlooked. Expression patterns of these receptors in the mesonephric tubules (MTs) and Wolffian duct (WD), which differentiate into the efferent ductules and epididymis, respectively, remain unclear because of the difficulty in distinguishing each region of the tracts. This study investigated AR, ESR1, and PGR expressions in the murine mesonephros using three-dimensional (3-D) reconstruction. The receptors were localized in serial paraffin sections of the mouse testis and mesonephros by immunohistochemistry on embryonic days (E) 12.5, 15.5, and 18.5. Specific regions of the developing MTs and WD were determined by 3-D reconstruction using Amira software. AR was found first in the specific portion of the MTs near the MT-rete junction at E12.5, and the epithelial expression showed increasing strength from cranial to the caudal regions. Epithelial expression of ESR1 was found in the cranial WD and MTs near the WD first at E15.5. PGR was weakly positive only in the MTs and cranial WD starting on E15.5. This 3-D analysis suggests that gonadal androgen acts first on the MTs near the MT-rete junction but that estrogen is the first to influence MTs near the WD, while potential PGR activity is delayed and limited to the epithelium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Some or all datasets generated during and/or analyzed during the current study are not publicly available but are available from the corresponding author on reasonable request.

References

  • Aceitero J, Llanero M, Parrado R et al (1998) Neonatal exposure of male rats to estradiol benzoate causes rete testis dilation and backflow impairment of spermatogenesis. Anat Rec 252:17–33

    Article  CAS  PubMed  Google Scholar 

  • Adebayo AO, Akinloye AK, Ihunwo AO et al (2017) Immunolocalization And Distribution Pattern of Estrogen (ERα and ERβ) and Progesterone (PR) Receptors along the Excurrent Duct of Male Greater Cane Rat (Thryonomys swinderianus). Niger J Physiol Sci 32:189–193

    CAS  PubMed  Google Scholar 

  • Aksel S, Cao M, Derpinghaus A et al (2022) Ontogeny of mouse Sertoli, Leydig and peritubular myoid cells from embryonic day 10 to adulthood. Differentiation. https://doi.org/10.1016/j.diff.2022.02.006

    Article  PubMed  Google Scholar 

  • Atanassova N, McKinnell C, Fisher J, Sharpe RM (2005) Neonatal treatment of rats with diethylstilboestrol (DES) induces stromal-epithelial abnormalities of the vas deferens and cauda epididymis in adulthood following delayed basal cell development. Reproduction 129:589–601

    Article  CAS  PubMed  Google Scholar 

  • Auharek SA, de França LR (2010) Postnatal testis development, Sertoli cell proliferation and number of different spermatogonial types in C57BL/6J mice made transiently hypo- and hyperthyroidic during the neonatal period. J Anat 216:577–588

    Article  PubMed  PubMed Central  Google Scholar 

  • Ball RY, Mitchinson MJ (1984) Obstructive lesions of the genital tract in men. J Reprod Fertil 70:667–673

    Article  CAS  PubMed  Google Scholar 

  • Bentvelsen FM, Brinkmann AO, van der Schoot P et al (1995) Developmental pattern and regulation by androgens of androgen receptor expression in the urogenital tract of the rat. Mol Cell Endocrinol 113:245–253

    Article  CAS  PubMed  Google Scholar 

  • Cho HW, Nie R, Carnes K et al (2003) The antiestrogen ICI 182,780 induces early effects on the adult male mouse reproductive tract and long-term decreased fertility without testicular atrophy. Reprod Biol Endocrinol 1:57

    Article  PubMed  PubMed Central  Google Scholar 

  • Clulow J, Jones RC, Hansen LA (1994) Micropuncture and cannulation studies of fluid composition and transport in the ductuli efferentes testis of the rat: comparisons with the homologous metanephric proximal tubule. Exp Physiol 79:915–928

    Article  CAS  PubMed  Google Scholar 

  • Cooke PS, Young P, Cunha GR (1991) Androgen receptor expression in developing male reproductive organs. Endocrinology 128:2867–2873

    Article  CAS  PubMed  Google Scholar 

  • Cunha GR, Li Y, Mei C et al (2021) Ontogeny of estrogen receptors in human male and female fetal reproductive tracts. Differentiation 118:107–131

    Article  CAS  PubMed  Google Scholar 

  • Eddy EM, Washburn TF, Bunch DO et al (1996) Targeted disruption of the estrogen receptor gene in male mice causes alteration of spermatogenesis and infertility. Endocrinology 137:4796–4805

    Article  CAS  PubMed  Google Scholar 

  • Ergün S, Ungefroren H, Holstein AF, Davidoff MS (1997) Estrogen and progesterone receptors and estrogen receptor-related antigen (ER-D5) in human epididymis. Mol Reprod Dev 47:448–455

    Article  PubMed  Google Scholar 

  • Fisher JS, Millar MR, Majdic G et al (1997) Immunolocalisation of oestrogen receptor-alpha within the testis and excurrent ducts of the rat and marmoset monkey from perinatal life to adulthood. J Endocrinol 153:485–495

    Article  CAS  PubMed  Google Scholar 

  • Fisher JS, Turner KJ, Brown D, Sharpe RM (1999) Effect of neonatal exposure to estrogenic compounds on development of the excurrent ducts of the rat testis through puberty to adulthood. Environ Health Perspect 107:397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher JS, Turner KJ, Fraser HM et al (1998) Immunoexpression of aquaporin-1 in the efferent ducts of the rat and marmoset monkey during development, its modulation by estrogens, and its possible role in fluid resorption. Endocrinology 139:3935–3945

    Article  CAS  PubMed  Google Scholar 

  • Free MJ, Jaffe RA (1979) Collection of rete testis fluid from rats without previous efferent duct ligation. Biol Reprod 20:269–278

    Article  CAS  PubMed  Google Scholar 

  • Free MJ, Jaffe RA, Morford DE (1980) Sperm transport trough the rete testis in anesthetized rats: Role of the testicular capsule and effect of gonadotropins and prostaglandins. Biol Reprod 22:1073–1078

    Article  CAS  PubMed  Google Scholar 

  • Guttroff RF, Cooke PS, Hess RA (1992) Blind-ending tubules and branching patterns of the rat ductuli efferentes. Anat Rec 232:423–431

    Article  CAS  PubMed  Google Scholar 

  • Harrison RG, Weiner JS (1949) Vascular patterns of the mammalian testis and their functional significance. J Exp Biol 26:304–16, 2 pl

  • Hasegawa C, Yokoyama T, Umemura Y et al (2020) Establishment of an organ culture system to induce Sertoli cell differentiation from undifferentiated mouse gonads. J Vet Med Sci 82:414–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hess RA (2014) Disruption of estrogen receptor signaling and similar pathways in the efferent ductules and initial segment of the epididymis. Spermatogenesis 4:e979103

    Article  PubMed  PubMed Central  Google Scholar 

  • Hess RA, Bunick D, Lee KH et al (1997) A role for oestrogens in the male reproductive system. Nature 390:509–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hess RA, Bunick D, Lubahn DB et al (2000) Morphologic Changes in Efferent Ductules and Epididymis in Estrogen Receptor-α Knockout Mice. J Androl 21:107–121

    CAS  PubMed  Google Scholar 

  • Hess RA, Cooke PS (2018) Estrogen in the male: a historical perspective. Biol Reprod 99:27–44

    Article  PubMed  PubMed Central  Google Scholar 

  • Hess RA, Sharpe RM, Hinton BT (2021) Estrogens and development of the rete testis, efferent ductules, epididymis and vas deferens. Differentiation 118:41–71

    Article  CAS  PubMed  Google Scholar 

  • Inoue M, Baba T, Takahashi F et al (2022) Tmsb10 triggers fetal Leydig differentiation by suppressing the RAS/ERK pathway. Commun Biol 5:974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jasuja R, Ramaraj P, Mac RP et al (2005) Delta-4-androstene-3,17-dione binds androgen receptor, promotes myogenesis in vitro, and increases serum testosterone levels, fat-free mass, and muscle strength in hypogonadal men. J Clin Endocrinol Metab 90:855–863

    Article  CAS  PubMed  Google Scholar 

  • Jia S, Zhao F (2022) Ex vivo development of the entire mouse fetal reproductive tract by using microdissection and membrane-based organ culture techniques. Differentiation 123:42–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones LA (1980) Long-term effects of neonatal administration of estrogen and progesterone, alone or in combination, on male BALB/c and BALB/cfC3H mice. Proc Soc Exp Biol Med 165:17–25

    Article  CAS  PubMed  Google Scholar 

  • Jost A (1953) Problems of fetal endocrinology. The gonadal and hypophyseal hormones. Recent Prog Horm Res 33:117–160

    Google Scholar 

  • Kanazawa Y, Omotehara T, Nakata H et al (2022) Three-dimensional analysis and in vivo imaging for sperm release and transport in the murine seminiferous tubule. Reproduction 164:9–18

    Article  CAS  PubMed  Google Scholar 

  • Kitagaki J, Ueda Y, Chi X et al (2011) FGF8 is essential for formation of the ductal system in the male reproductive tract. Development 138:5369–5378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KH, Hess RA, Bahr JM et al (2000) Estrogen receptor alpha has a functional role in the mouse rete testis and efferent ductules. Biol Reprod 63:1873–1880

    Article  CAS  PubMed  Google Scholar 

  • Lee K-H, Park J-H, Bunick D et al (2009) Morphological comparison of the testis and efferent ductules between wild-type and estrogen receptor alpha knockout mice during postnatal development. J Anat 214:916–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Légaré C, Sullivan R (2020) Differential gene expression profiles of human efferent ducts and proximal epididymis. Andrology 8:625–636

    Article  PubMed  Google Scholar 

  • Leir S-H, Yin S, Kerschner JL et al (2020) An atlas of human proximal epididymis reveals cell-specific functions and distinct roles for CFTR. Life Sci Alliance 3. https://doi.org/10.26508/lsa.202000744

  • Logsdon NT, Gallo CM, Sampaio FJB, Favorito LA (2022) Epididymal disjunction anomalies in undescended testis - a factor associated with spermatic obstruction. Int Braz J Urol 48:336–346

    Article  PubMed  PubMed Central  Google Scholar 

  • Lupien M, Diévart A, Morales CR et al (2006) Expression of constitutively active Notch1 in male genital tracts results in ectopic growth and blockage of efferent ducts, epididymal hyperplasia and sterility. Dev Biol 300:497–511

    Article  CAS  PubMed  Google Scholar 

  • Lydon JP, DeMayo FJ, Funk CR et al (1995) Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev 9:2266–2278

    Article  CAS  PubMed  Google Scholar 

  • Magers MJ, Udager AM, Chinnaiyan AM et al (2016) Comprehensive Immunophenotypic Characterization of Adult and Fetal Testes, the Excretory Duct System, and Testicular and Epididymal Appendages. Appl Immunohistochem Mol Morphol 24:e50-68

    Article  CAS  PubMed  Google Scholar 

  • McEntee K (1990) Efferent ductules, epididymis, and deferent duct. Reproductive Pathology of Domestic Mammals. Academic Press, San Diego, pp 307–332

    Chapter  Google Scholar 

  • McKinnell C, Atanassova N, Williams K et al (2001) Suppression of androgen action and the induction of gross abnormalities of the reproductive tract in male rats treated neonatally with diethylstilbestrol. J Androl 22:323–338

    CAS  PubMed  Google Scholar 

  • Murashima A, Miyagawa S, Ogino Y et al (2011) Essential roles of androgen signaling in Wolffian duct stabilization and epididymal cell differentiation. Endocrinology 152:1640–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naito M, Hirai S, Terayama H et al (2014) Neonatal estrogen treatment with β-estradiol 17-cypionate induces in post-pubertal mice inflammation in the ductuli efferentes, epididymis, and vas deferens, but not in the testis, provoking obstructive azoospermia. Med Mol Morphol 47:21–30

    Article  CAS  PubMed  Google Scholar 

  • Nakata H, Omotehara T, Itoh M et al (2021) Three-dimensional structure of testis cords in mice and rats. Andrology 9:1911–1922

    Article  CAS  PubMed  Google Scholar 

  • Nerurkar NL, Mahadevan L, Tabin CJ (2017) BMP signaling controls buckling forces to modulate looping morphogenesis of the gut. Proc Natl Acad Sci 114:2277–2282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen M, Björnsdóttir S, Høyer PE, Byskov AG (2000) Ontogeny of oestrogen receptor α in gonads and sex ducts of fetal and newborn mice. J Reprod Fertil 118:195–204

    Article  CAS  PubMed  Google Scholar 

  • Nishizawa H, Okamoto T, Yoshimura Y (2002) Immunolocalization of sex steroid receptors in the epididymis and ductus deferens of immature and mature Japanese Quail, Coturnix Japonica. Anim Sci J 73:339–346

    Article  CAS  Google Scholar 

  • Oliveira CA, Zhou Q, Carnes K et al (2002) ER function in the adult male rat: short- and long-term effects of the antiestrogen ICI 182,780 on the testis and efferent ductules, without changes in testosterone. Endocrinology 143:2399–2409

    Article  CAS  PubMed  Google Scholar 

  • Omotehara T, Nakata H, Itoh M (2022a) Three-dimensional analysis of mesonephric tubules remodeling into efferent tubules in the male mouse embryo. Dev Dyn 251:513–524

    Article  CAS  PubMed  Google Scholar 

  • Omotehara T, Nakata H, Nagahori K, Itoh M (2022b) Comparative anatomy on the development of sperm transporting pathway between the testis and mesonephros. Histochem Cell Biol 157:321–332

    Article  CAS  PubMed  Google Scholar 

  • Omotehara T, Wu X, Kuramasu M, Itoh M (2020) Connection between seminiferous tubules and epididymal duct is originally induced before sex differentiation in a sex-independent manner. Dev Dyn 249:754–764

    Article  CAS  PubMed  Google Scholar 

  • Pal PC, Manocha M, Kapur MM et al (2006) Obstructive infertility: changes in the histology of different regions of the epididymis and morphology of spermatozoa. Andrologia 38:128–136

    Article  CAS  PubMed  Google Scholar 

  • Pelletier G, El-Alfy M (2000) Immunocytochemical localization of estrogen receptors α and β in the human reproductive organs. J Clin Endocrinol Metab 85:4835–4840

    CAS  PubMed  Google Scholar 

  • Phelps SM, Lydon JP, O’malley BW, Crews D (1998) Regulation of male sexual behavior by progesterone receptor, sexual experience, and androgen. Horm Behav 34:294–302

    Article  CAS  PubMed  Google Scholar 

  • Prins GS, Birch L, Greene GL (1991) Androgen receptor localization in different cell types of the adult rat prostate. Endocrinology 129:3187–3199

    Article  CAS  PubMed  Google Scholar 

  • Rajalakshmi M, Kumar BV, Ramakrishnan PR, Kapur MM (1990) Histology of the epididymis in men with obstructive infertility. Andrologia 22:319–326

    Article  CAS  PubMed  Google Scholar 

  • Reyes FI, Winter JSD, Faiman C (1973) Studies on Human Sexual Development. I. Fetal Gonadal and Adrenal Sex Steroids1. J Clin Endocrinol Metab 37:74–78

    Article  CAS  PubMed  Google Scholar 

  • Rivas A, Fisher JS, McKinnell C et al (2002) Induction of reproductive tract developmental abnormalities in the male rat by lowering androgen production or action in combination with a low dose of diethylstilbestrol: evidence for importance of the androgen-estrogen balance. Endocrinology 143:4797–4808

    Article  CAS  PubMed  Google Scholar 

  • Rivas A, McKinnell C, Fisher JS et al (2003) Neonatal coadministration of testosterone with diethylstilbestrol prevents diethylstilbestrol induction of most reproductive tract abnormalities in male rats. J Androl 24:557–567

    Article  CAS  PubMed  Google Scholar 

  • Sar M, Welsch F (2000) Oestrogen receptor alpha and beta in rat prostate and epididymis. Andrologia 32:295–301

    Article  CAS  PubMed  Google Scholar 

  • Savin T, Kurpios NA, Shyer AE et al (2011) On the growth and form of the gut. Nature 476:57–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider JS, Burgess C, Sleiter NC et al (2005) Enhanced sexual behaviors and androgen receptor immunoreactivity in the male progesterone receptor knockout mouse. Endocrinology 146:4340–4348

    Article  CAS  PubMed  Google Scholar 

  • Shapiro E, Huang H, Masch RJ et al (2005) Immunolocalization of androgen receptor and estrogen receptors alpha and beta in human fetal testis and epididymis. J Urol 174:1695–8; discussion 1698

  • Sharpe RM, Skakkebaek NE (1993) Are oestrogens involved in falling sperm counts and disorders of the male reproductive tract? Lancet 341:1392–1395

    Article  CAS  PubMed  Google Scholar 

  • Shima Y, Miyabayashi K, Haraguchi S et al (2013) Contribution of Leydig and Sertoli cells to testosterone production in mouse fetal testes. Mol Endocrinol 27:63–73

    Article  CAS  PubMed  Google Scholar 

  • Siemienowicz KJ, Wang Y, Marečková M et al (2020) Early pregnancy maternal progesterone administration alters pituitary and testis function and steroid profile in male fetuses. Sci Rep 10:1–12

    Article  Google Scholar 

  • Siiteri PK, Wilson JD (1974) Testosterone Formation and Metabolism During Male Sexual Differentiation in the Human Embryo. J Clin Endocrinol Metab 38:113–125

    Article  CAS  PubMed  Google Scholar 

  • Sipilä P, Björkgren I (2016) Segment-specific regulation of epididymal gene expression. Reproduction 152:R91–R99

    Article  PubMed  Google Scholar 

  • Sullivan R, Légaré C, Lamontagne-Proulx J et al (2019) Revisiting structure/functions of the human epididymis. Andrology 7:748–757

    CAS  PubMed  Google Scholar 

  • Tong SYC, Hutson JM, Watts LM (1996) Does Testosterone Diffuse Down the Wolffian Duct During Sexual Differentiation? J Urol 155:2057–2059

    Article  CAS  PubMed  Google Scholar 

  • vom Saal FS, Cooke PS, Buchanan DL et al (1998) A physiologically based approach to the study of bisphenol A and other estrogenic chemicals on the size of reproductive organs, daily sperm production, and behavior. Toxicol Ind Health 14:239–260

    Article  Google Scholar 

  • Vornberger W, Prins G, Musto NA, Suarez-Quian CA (1994) Androgen receptor distribution in rat testis: new implications for androgen regulation of spermatogenesis. Endocrinology 134:2307–2316

    Article  CAS  PubMed  Google Scholar 

  • Welsh M, Sharpe RM, Walker M et al (2009) New insights into the role of androgens in wolffian duct stabilization in male and female rodents. Endocrinology 150:2472–2480

    Article  CAS  PubMed  Google Scholar 

  • Williams K, Saunders PT, Atanassova N et al (2000) Induction of progesterone receptor immunoexpression in stromal tissue throughout the male reproductive tract after neonatal oestrogen treatment of rats. Mol Cell Endocrinol 164:117–131

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto A, Omotehara T, Miura Y et al (2018) The mechanisms underlying the effects of AMH on Müllerian duct regression in male mice. J Vet Med Sci 80:557–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang CF, Chiang MC, Gray DC et al (2013) Sexually dimorphic neurons in the ventromedial hypothalamus govern mating in both sexes and aggression in males. Cell 153:896–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • You L, Sar M (1998) Androgen receptor expression in the testes and epididymides of prenatal and postnatal Sprague-Dawley rats. Endocrine 9:253–261

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate Mr. Shuichi Yamazaki's technical assistance in making serial paraffin sections. We also thank Ms. Xi Wu, Ms. Miyuki Kuramasu, and Ms. Yuki Ogawa for their assistance in routine immunohistochemistry procedures, image processing, and secretary work. 

Funding

This study was supported by JSPS KAKENHI under Grant Number JP19K16483.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuya Omotehara.

Ethics declarations

Ethical approval (research involving human participants and/or animals)

Institutional Animal Care and Use Committee of Tokyo Medical University (Permission #R3-0066).

Informed consent

Not Applicable.

Disclosure of potential conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 137 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omotehara, T., Hess, R.A., Nakata, H. et al. Expression patterns of sex steroid receptors in developing mesonephros of the male mouse: three-dimensional analysis. Cell Tissue Res 393, 577–593 (2023). https://doi.org/10.1007/s00441-023-03796-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-023-03796-0

Keywords

Navigation