Skip to main content

Advertisement

Log in

Cellular and molecular mechanisms of the organogenesis and development, and function of the mammalian parathyroid gland

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Serum calcium homeostasis is mainly regulated by parathormone (PTH) secreted by the parathyroid gland. Besides PTH and Gcm2, a master gene for parathyroid differentiation, many genes are expressed in the gland. Especially, calcium-sensing receptor (CaSR), vitamin D receptor (VDR), and Klotho function to prevent increased secretion of PTH and hyperplasia of the parathyroid gland under chronic hypocalcemia. Parathyroid-specific dual deletion of Klotho and CaSR induces a marked enlargement of the glandular size. The parathyroid develops from the third and fourth pharyngeal pouches except murine species in which the gland is derived from the third pouch only. The development of the murine parathyroid gland is categorized as follows: (1) formation and differentiation of the pharyngeal pouches, (2) appearance of parathyroid domain in the third pharyngeal pouch together with thymus domain, (3) migration of parathyroid primordium attached to the top of thymus, and (4) contact with the thyroid lobe and separation from the thymus. The transcription factors and signaling molecules involved in each of these developmental stages are elaborated. In addition, mesenchymal neural crest cells surrounding the pharyngeal pouches and parathyroid primordium and invading the parathyroid parenchyma participate in the development of the gland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

1,25-(OH)2D3 :

1,25-Dihydroxyvitamin D3

Bmp4:

Bone morphogenetic protein 4

BDNF:

Brain-derived neurotrophic factor

CaSR:

Calcium-sensing receptor

CGRP:

Calcitonin gene-related peptide

EGFR:

Epidermal growth factor receptor

Eya1:

Eyes absent 1

FGF:

Fibroblast growth factor

FGFR:

FGF receptor

Fox:

Forkhead box

Gcm2:

Glial cells missing 2

GFAP:

Glial fibrillary acidic protein

MafB:

V-Maf musculoaponeurotic fibrosarcoma oncogene homologue B

NGF:

Nerve growth factor

NT3:

Neurotrophin 3

NT4:

Neurotrophin 4

NTR:

Neurotrophin receptor

PGP9.5:

Protein gene product 9.5

PTH:

Parathormone

Sema3d:

Semaphorin 3d

Shh:

Sonic hedgehog

TH:

Tyrosine hydroxylase

VDR:

Vitamin D receptor

VIP:

Vasoactive intestinal polypeptide

References

  • Adams RH, Wilkinson GA, Weiss C, Diella F, Gale NW et al (1999) Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev 13:295–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold JS, Werling U, Braunstein EM, Liao J, Nowotschin S et al (2006) Inactivation of Tbx1 in the pharyngeal endoderm results in 22qllDS malformations. Development 133:977–987

    Article  CAS  PubMed  Google Scholar 

  • Arps H, Dietel M, Lauritzen B, Elting JJ, Niendorf A, Cohn DV (1987) Co-localization of parathyroid hormone and secretory protein-I in bovine parathyroid glands: a double immunocytochemical study at the electron microscopical level. Bone Miner 2:175–183

    CAS  PubMed  Google Scholar 

  • Ben-Dov IZ, Galitzer H, Vavi-Moshayoff V, Goetz R, Kuro-o M et al (2007) The parathyroid is a target organ for FGF23 in rats. J Clin Invest 117:4003–4008

    CAS  PubMed  PubMed Central  Google Scholar 

  • Borges M, Linnoila RI, van de Velde HJ, Chen H, Nelkin BD et al (1997) An achaete-scute homologue essential for neuroendocrine differentiation in the lung. Nature 386:852–855

    Article  CAS  PubMed  Google Scholar 

  • Brown EM (2013) Role of the calcium-sensing receptor in extracellular calcium homeostasis. Best Pract Res Clin Endocrinol Metab 27:333–343

    Article  CAS  PubMed  Google Scholar 

  • Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R et al (1993) Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature 366:575–580

    Article  CAS  PubMed  Google Scholar 

  • Capen CC, Young DM (1967) The ultrastructure of the parathyroid glands and thyroid parafollicular cells of cows with parturient paresis and hypocalcemia. Lab Invest 17:717–737

    CAS  PubMed  Google Scholar 

  • Carrillo-Lopez N, Alvarez-Hernandez D, Gonzalez-Suarez I, Roman-Garcia P, Valdivielso JM et al (2008) Simultaneous changes in the calcium-sensing receptor and the vitamin D receptor under the influence of calcium and calcitriol. Nephrol Dial Transplant 23:3479–3484

    Article  CAS  PubMed  Google Scholar 

  • Chisaka O, Capecchi MR (1991) Regionally restricted developmental defects resulting from targeted disruption of the mouse homeobox gene Hox–1.5. Nature 350:473–479

    Article  CAS  PubMed  Google Scholar 

  • Chisaka O, Kameda Y (2005) Hoxa3 regulates the proliferation and differentiation of the third pharyngeal arch mesenchyme in mice. Cell Tissue Res 320:77–89

    Article  CAS  PubMed  Google Scholar 

  • Chojnowski J, Masuda K, Trau HA, Thomas K, Manley CM, NR, (2014) Multiple roles for HOXA3 in regulating thymus and parathyroid differentiation and morphogenesis in mouse. Development 141:3697–3708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark NB (1967) Parathyroid Glands in Reptiles Am Zoologist 7:869–881

    Article  CAS  Google Scholar 

  • Conway SJ, Henderson DJ, Copp AJ (1997) Pax3 is required for cardiac neural crest migration in the mouse: evidence from the splotch (Sp2H) mutant. Development 124:505–514

    Article  CAS  PubMed  Google Scholar 

  • Cortelyou JR, McWhinnie DJ (1967) Parathyroid glands of amphibians. 1. Parathyroid structure and function in the amphibian, with emphasis on regulation of mineral ions in body fluids. Am Zoolog 7:843–855

    Article  CAS  Google Scholar 

  • Cutz E, Pan J, Yeger H, Domnik NJ, Fisher JT (2013) Recent advances and controversies on the role of pulmonary neuroepithelial bodies as airway sensors. Semin Cell Dev Biol 24:40–50

    Article  PubMed  Google Scholar 

  • Epstein JA, Li J, Lang D, Chen F, Brown CB, Jin F, Lu MM, Thomas M, Liu ECJ, Wessels A, Lo CW (2000) Migration of cardiac neural crest cells in Splotch embryos. Development 127:1869–1878

    Article  CAS  PubMed  Google Scholar 

  • Fagman H, Liao J, Westerlund J, Andersson L, Morrow BE, Nilsson M (2007) The 22q11 deletion syndrome candidate gene Tbx1 determines thyroid size and positioning. Human Mol Gen 16:276–285

    Article  CAS  Google Scholar 

  • Fan Y, Liu W, Bi R, Densmore MJ, Sato T et al (2018) Interrelated role of Klotho and calcium-sensing receptor in parathyroid hormone synthesis and parathyroid hyperplasia. Proc Natl Acad Sci USA 115:E3749–E3758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foster KE, Gordon J, Cardenas K, Veiga-Fernandes H, Makinen T, er al, (2010) EphB-ephrin-B2 interactions are required for thymus migration during organogenesis. Proc Natl Acad Sci USA 107:13414–13419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frank DU, Fotheringham LK, Brewer JA, Muglia LJ, Tristani-Firouzi M, Capecchi MR, Moon AM (2002) An Fgf8 mouse mutant phenocopies human 22q11 deletion syndrome. Development 129:4591–4603

    Article  CAS  PubMed  Google Scholar 

  • Franz T (1989) Persistent truncus arteriosus in the Splotch mutant mouse. Anat Embryol 180:457–464

  • Gardiner JR, Jackson AL, Gordon J, Lickert H, Manley NR, Basson MA (2012) Localized inhibition of FGF signalling in the third pharyngeal pouch is required for normal thymus and parathyroid organogenesis. Development 139:3456–3466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garg V, Yamagishi C, Hu T, Kathiriya IS, Yamagishi H, Srivastava D (2001) Tbx1, a DiGeorge syndrome candidate gene, is regulated by sonic hedgehog during pharyngeal arch development. Dev Biol 235:62–73

    Article  CAS  PubMed  Google Scholar 

  • Gordon J, Bennett AR, Blackburn CC, Manley NR (2001) Gcm2 and Foxn1 mark early parathyroid- and thymus-specific domains in the developing third pharyngeal pouch. Mech Dev 103:141–143

    Article  CAS  PubMed  Google Scholar 

  • Gordon J, Patel SR, Mishina Y, Manley NR (2010) Evidence for an early role for BMP4 signaling in thymus and parathyroid morphogenesis. Dev Biol 339:141–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham A (2003) Development of the pharyngeal arches. Am J Med Gen 119A:251–256

    Article  Google Scholar 

  • Grevellec A, Graham A, Tucker AS (2011) Shh signalling restricts the expression of Gcm2 and controls the position of the developing parathyroids. Dev Biol 353:194–205

    Article  CAS  PubMed  Google Scholar 

  • Griffith AV, Cardenas K, Carter C, Gordon J, Iberg A et al (2009) Increased thymus- and decreased parathyroid-fated organ domains in Splotch mutant embryos. Dev Biol 327:216–227

    Article  CAS  PubMed  Google Scholar 

  • Grigorieva IV, Mirczuk S, Gaynor KU, Nesbit MA, Grigorieva EF et al (2010) Gata3-deficient mice develop parathyroid abnormalities due to dysregulation of the parathyroid-specific transcription factor Gcm2. J Clin Invest 120:2144–2155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grzela T, Chudzinski W, Lasiecka Z, Niderla J, Wilczynski G (2006) The calcium-sensing receptor and vitamin D receptor expression in tertiary hyperparathyroidism. Internat J Mol Med 17:779–783

    CAS  Google Scholar 

  • Günther T, Chen ZF, Kim J, Priemel M, Rueger JM et al (2000) Genetic ablation of parathyroid glands reveals another source of parathyroid hormone. Nature 406:199–203

    Article  PubMed  Google Scholar 

  • Hadari YR, Gotoh N, Kouhara H, Lax I, Schlessinger J (2001) Critical role for the docking-protein FRS2α in FGF receptor-mediated signal transduction pathways. Proc Natl Acad Sci USA 98:8578–8583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han S, Tsunekage Y, Kataoka K (2015) Gata3 cooperates with Gcm2 and MafB to activate parathyroid hormone gene expression by interacting with SP1. Mol Cell Endocrinol 411:113–120

    Article  CAS  PubMed  Google Scholar 

  • Hasten E, Morrow BE (2019) Tbx1 and Foxi3 genetically interact in the pharyngeal pouch endoderm in a mouse model for 22q11.2 deletion syndrome. PLOS Genet 1008301:1–30

    Google Scholar 

  • Ho C, Conner DA, Pollak MR, Ladd DJ, Kifor O et al (1995) A mouse model of human familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Nat Genet 11:389–394

    Article  CAS  PubMed  Google Scholar 

  • Ivins S, Lammerts van Beuren K, Roberts C, James C, Lindsay E et al (2005) Microarray analysis detects differentially expressed genes in the pharyngeal region of mice lacking Tbx1. Dev Biol 285:554–569

    Article  CAS  PubMed  Google Scholar 

  • Jerome LA, Papaioannou VE (2001) DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1. Nature Gen 27:286–291

    Article  CAS  Google Scholar 

  • Kageyama R, Ohtsuka T (1999) The Notch-Hes pathway in mammalian neural development. Cell Res 9:179–188

    Article  CAS  PubMed  Google Scholar 

  • Kameda Y (1971a) The occurrence and distribution of the parafollicular cells in the thyroid, parathyroid IV and thymus IV in some mammals. Arch Histol Jpn 33:283–299

    Article  CAS  PubMed  Google Scholar 

  • Kameda Y (1971b) The occurrence of a special parafollicular cell complex in and beside the dog thyroid gland. Arch Histol Jpn 33:115–132

    Article  CAS  PubMed  Google Scholar 

  • Kameda Y (1983) Distribution of C cells in Monkey thyroid glands as studied by the immunoperoxidase method using anti-calcitonin and anti-C-thyroglobulin antisera. Arch Histol Jpn 46:221–228

    Article  CAS  PubMed  Google Scholar 

  • Kameda Y (1990) Distribution of serotonin-immunoreactive cells around arteries arising from the common carotid artery in the chicken. Anat Rec 227:87–96

    Article  CAS  PubMed  Google Scholar 

  • Kameda Y (2007) Expression of glial progenitor markers p75NTR and S100 protein in the developing mouse parathyroid gland. Cell Tissue Res 327:15–23

    Article  CAS  PubMed  Google Scholar 

  • Kameda Y (2009) Hoxa3 and signaling molecules involved in aortic arch patterning and remodeling. Cell Tissue Res 336:165–178

    Article  CAS  PubMed  Google Scholar 

  • Kameda Y, Watari-Goshima W, Nishimaki T, Chisaka O (2003) Disruption of the Hoxa3 homeobox gene results in anomalies of the carotid artery system and the arterial baroreceptors. Cell Tissue Res 311:343–352

    Article  PubMed  Google Scholar 

  • Kameda Y, Arai Y, Nishimaki T, Chisaka O (2004) The role of Hoxa3 gene in parathyroid gland organogenesis of the mouse. J Histochem Cytochem 52:641–651

    Article  CAS  PubMed  Google Scholar 

  • Kameda Y, Nishimaki T, Chisaka O, Iseki S, Sucov HM (2007a) Expression of the epithelial marker E-cadherin by thyroid C cells and their precursors during murine development. J Histochem Cytochem 55:1075–1088

    Article  CAS  PubMed  Google Scholar 

  • Kameda Y, Nishimaki T, Miura M, Jiang SX, Guillemot F (2007b) Mash1 regulates the development of C cells in mouse thyroid glands. Dev Dyn 236:262–270

    Article  CAS  PubMed  Google Scholar 

  • Kameda Y, Ito M, Nishimaki T, Gotoh N (2009) FRS2α is required for the separation, migration, and survival of pharyngeal-endoderm derived organs including thyroid, ultimobranchial body, parathyroid, and thymus. Dev Dyn 238:503–513

    Article  PubMed  Google Scholar 

  • Kameda Y, Saitoh T, Nemoto N, Katoh T, Iseki S, Fujimura T (2013) Hes1 is required for the development of pharyngeal organs and survival of neural crest-derived mesenchymal cells in pharyngeal arches. Cell Tissue Res 353:9–25

    Article  CAS  PubMed  Google Scholar 

  • Kamitani-Kawamoto A, Hamada M, Moriguchi T, Miyai M, Saji F et al (2011) MafB interacts with Gcm2 and regulates parathyroid hormone expression and parathyroid development. J Bone Miner Res 26:2463–2472

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Jones BW, Zock C, Chen Z, Wang H, Goodman CS, Anerson DJ (1998) Isolation and characterization of mammalian homologs of the Drosophila gene glial cells missing. Proc Natl Acad Sci USA 95:12364–12369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kos CH, Karaplis AC, Peng JB, Hediger MA, Goltzman D et al (2003) The calcium-sensing receptor is required for normal calcium homeostasis independent of parathyroid hormone. J Clin Invest 111:1021–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi ST, Utsugi T et al (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390:45–51

    Article  CAS  PubMed  Google Scholar 

  • Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A et al (2005) Suppression of aging in mice by the hormone Klotho. Science 309:1829–1833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SM, Bishop KA, Goellner JJ, O’Brien CA, Pike JW (2014) Mouse and human BAC transgenes recapitulate tissue-specific expression of the vitamin D receptor in mice and rescue the VDR-null phenotype. Endocrinology 155:2064–2076

    Article  PubMed  PubMed Central  Google Scholar 

  • Lewis AE, Hwa J, Wang R, Soriano P, Bush JO (2015) Neural crest defects in ephrin-B2 mutant mice are non-autonomous and originate from defects in the vasculature. Dev Biol 406:186–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YC, Pirro A, Amling M, Delling G, Baron R et al (1997) Targeted ablation of the vitamin D receptor: an animal model of vitamin D-dependent rickets type II with alopecia. Proc Natl Acad Sci USA 94:9831–9835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Liu Z, Xiao S, Manley NR (2013) Transdifferentiation of parathyroid cells into cervical thymi promotes atypical T-cell development. Nature Comm 4:2959

    Article  Google Scholar 

  • Lim KC, Lakshmanan G, Crawford SE, Gu Y, Grosveld F, Engel JD (2000) Gata3 loss leads to embryonic lethality due to noradrenaline deficiency of the sympathetic nervous system. Nature 25:209–212

    CAS  Google Scholar 

  • Liu Z, Yu S, Manley NR (2007) Gcm2 is required for the differentiation and survival of parathyroid precursor cells in the parathyroid/thymus primordia. Dev Biol 305:333–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Farley A, Chen L, Kirby BJ, Kovacs CS et al (2010) Thymus-associated parathyroid hormone has two cellular origins with distinct endocrine and immunological functions. PloS Genet 6:e1001251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manley NR, Capecchi MR (1998) Hox group3 paralogs regulate the development and migration of the thymus, thyroid, and parathyroid glands. Dev Biol 195:1–15

    Article  CAS  PubMed  Google Scholar 

  • Manley NR, Selleri L, Brendolan A, Gordon J, Cleary ML (2004) Abnormalities of caudal pharyngeal pouch development in Pbx1 knockout mice mimic loss of Hox3 paralogs. Dev Biol 276:301–312

    Article  CAS  PubMed  Google Scholar 

  • Moallem E, Kilav R, Silver J, Naveh—Many T, (1998) RNA-protein binding and post-transcriptional regulation of parathyroid hormone gene expression by calcium and phosphate. J Biol Chem 273:5253–5259

    Article  CAS  PubMed  Google Scholar 

  • Moore-Scott BA, Manley NR (2005) Differential expression of Sonic hedgehog along the anterior-posterior axis regulates patterning of pharyngeal pouch endoderm and pharyngeal endoderm-derived organs. Dev Biol 278:323–335

    Article  CAS  PubMed  Google Scholar 

  • Munger BL, Roth SI (1963) The cytology of the normal parathyroid glands of man and Virginia deer; a light and electron microscopic study with morphologic evidence of secretory activity. J Cell Biol 16:379–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagami K, Warshawsky H, Leblond CP (1971) The elaboration of protein and carbohydrate by rat parathyroid cells as revealed by electron microscope radioautography. J Cell Biol 51:596–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naveh-Many T, Friedlaender MM, Mayer H, Silver J (1989) Calcium regulates parathyroid hormone messenger ribonucleic acid (mRNA), but not calcitonin mRNA in vivo in the rat. Dominant role of 1, 25-dihydroxyvitamin D. Endocrinology 125:275–280

    Article  CAS  PubMed  Google Scholar 

  • Noussions G, Anagnostis P, Natsis K (2012) Ectopic parathyroid glands and their anatomical, clinical and surgical implications. Exp Clin Endocrinol Diabetes 120:604–610

    Article  Google Scholar 

  • Okubo T, Kawamura A, Takahashi J, Yagi H, Morishima M, Matsuoka R, Takada S (2011) Ripply3, a Tbx1 repressor, is required for development of the pharyngeal apparatus and its derivatives in mice. Development 138:339–348

    Article  CAS  PubMed  Google Scholar 

  • Patel SR, Gordon J, Mahbub F, Blackburn C, Manley NR (2006) Bmp4 and Noggin expression during early thymus and parathyroid organogenesis. Gene Expr Patt 6:794–799

    Article  CAS  Google Scholar 

  • Peters H, Neubuser A, Kratochwil K, Balling R (1998) Pax9-deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities. Genes Dev 12:2735–2747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phitayakorn R, McHenry CR (2006) Incidence and location of ectopic abnormal parathyroid glands. Am J Surg 191:418–423

    Article  PubMed  Google Scholar 

  • Rochais F, Dandonneau M, Mesbah K, Jarry T, Mattei M-G, Kelly RG (2009) Hes1 is expressed in the second heart field and is required for outflow tract development. Plos ONE 4:e6267 (1–11)

  • Scambler PJ (2000) The 22q11 deletion syndromes. Hum Mol Gen 9:2421–2426

    Article  CAS  PubMed  Google Scholar 

  • Selleri L, Depew MJ, Jacobs Y, Chandak SK, Tsang KY et al (2001) Requirement for Pbx1 in skeletal patterning and programming chondrocyte proliferation and differentiation. Development 128:3543–3557

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Mia MM, Cibi DM, Arya AK, Bhadada SK, Singh MK (2019) Deficiency in the secreted protein Semaphorin3d causes abnormal parathyroid development in mice. J Biol Chem 294:8336–8347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su D, Ellis S, Napier A, Lee K, Manley NR (2001) Hoxa3 and pax1 regulate epithelial cell death and proliferation during thymus and parathyroid organogenesis. Dev Biol 236:316–329

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Ishida M, Hirokawa K, Takahashi H (2008) Expression of the semaphorins Sema 3D and Sema 3F in the developing parathyroid and thymus. Dev Dyn 237:1699–1708

    Article  CAS  PubMed  Google Scholar 

  • Takeshita K, Fujimori T, Kurotaki Y, Honjo H, Tsujikawa H et al (2004) Sinoatrial node dysfunction and early unexpected death of mice with a defect of klotho gene expression. Circulation 109:1776–1782

    Article  PubMed  Google Scholar 

  • Taupenot L, Harper KL, O’Connor DT (2003) The chromogranin-secretogranin family. New Engl J Med 348:1134–1149

    Article  CAS  PubMed  Google Scholar 

  • Teshima TH, Lourenco SV, Tucker AS (2016) Multiple cranial organ defects after conditionally knocking out Fgf10 in the neural crest. Front Physiol 7:488

    Article  PubMed  PubMed Central  Google Scholar 

  • Trainor PA, Krumlauf R (2000) Patterning the cranial neural crest: hindbrain segmentation and Hox gene plasticity. Nature Rev Neurosci 1:116–124

    Article  CAS  Google Scholar 

  • Van Bueren KL, Papangeli I, Rochais F, Pearce K, Robert C, Calmont A, Szumska D, Kelly RG, Bhattacharya S, Scambler PJ (2010) Hes1 expression is reduced in Tbx1 null cells and is required for the development of structures affected in 22q11 deletion syndrome. Dev Biol 340:369–380

    Article  PubMed  PubMed Central  Google Scholar 

  • Vitelli F, Morishima M, Taddei I, Lindsay EA, Baldini A (2002a) Tbx1 mutation causes multiple cardiovascular defects and disrupts neural crest and cranial nerve migratory pathways. Hum Mol Gen 11:915–922

    Article  CAS  PubMed  Google Scholar 

  • Vitelli F, Taddei I, Morishima M, Meyers EN, Lindsay EA, Baldini A (2002b) A genetic link between Tbx1 and fibroblast growth factor signaling. Development 129:4605–4611

    Article  CAS  PubMed  Google Scholar 

  • Wallin J, Eibel H, Neubüser A, Wilting J, Koseki H, Balling R (1996) Pax1 is expressed during development of the thymus epithelium and is required for normal T-cell maturation. Development 122:23–30

    Article  CAS  PubMed  Google Scholar 

  • Watari N, Kameda Y, Takeichi M, Chisaka O (2001) Hoxa3 regulates integration of glossopharyngeal nerve precursor cells. Dev Biol 240:15–31

    Article  CAS  PubMed  Google Scholar 

  • Westerlund J, Andersson L, Carlsson T, Fagman H, Nilsson M (2013) Misguided migration of C cell precursors to extra-thyroidal locations related to defective pharyngeal pouch development in Shh deficient mice. Cell Dev Biol 2:129

    Article  Google Scholar 

  • Xu PX, Zheng W, Laclef C, Maire P, Maas RL, Peters H, Xu X (2002) Eya1 is required for the morphogenesis of mammalian thymus, parathyroid and thyroid. Development 129:3033–3044

    Article  CAS  PubMed  Google Scholar 

  • Yamada T, Tatsumi N, Anraku A, Suzuki H, Kamejima S et al (2019) Gcm2 regulates the maintenance of parathyroid cells in adult mice. PLoS ONE 14(1):e0210662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto M, Igarashi T, Muramatsu M, Fukagawa M, Motokura T, Ogata E (1989) Hypocalcemia increases and hypercalcemia decreases the steady-stage level of parathyroid hormone messenger RNA in the rat. J Clin Invest 83:1053–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida T, Fujimori T, Nabeshima Y (2002) Mediation of unusually high concentrations of 1,25-dihydroxyvitamin D in homozygous klotho mutant mice by increased expression of renal 1α-hydroxylase gene. Endocrinology 143:683–689

    Article  CAS  PubMed  Google Scholar 

  • Yuan Z, Opas EE, Vrikshajanani C, Libutti SK, Levine MA (2014) Generation of mice encoding a conditional null allele of Gcm2. Transgenic Res 23:631–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zabel M, Dietel M (1987) S-100 protein and neuron-specific enolase in parathyroid glands and C-cells of the thyroid. Histochemistry 86:389–392

    Article  CAS  PubMed  Google Scholar 

  • Zou D, Silvius D, Davenport J, Grifone R, Maire P, Xu PX (2006) Patterning of the third pharyngeal pouch into thymus/parathyroid by Six and Eya1. Dev Biol 293:499–512

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoko Kameda.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Ethical approval and consent to participate

All animal procedures were approved by the Animal Use and Care Committee of Kitasato University School of Medicine and conformed to NIH guidelines. This article does not contain any studies with human participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kameda, Y. Cellular and molecular mechanisms of the organogenesis and development, and function of the mammalian parathyroid gland. Cell Tissue Res 393, 425–442 (2023). https://doi.org/10.1007/s00441-023-03785-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-023-03785-3

Keywords

Navigation