Skip to main content

Advertisement

Log in

Activating transcription factor 5 (ATF5) controls intestinal tuft and goblet cell expansion upon succinate-induced type 2 immune responses in mice

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Intestinal tuft cells, a chemosensory cell type in mucosal epithelia that secrete interleukin (IL)-25, play a pivotal role in type 2 immune responses triggered by parasitic infections. Tuft cell-derived IL-25 activates type 2 innate lymphoid cells (ILC2) to secrete IL-13, which, in turn, acts on intestinal stem or transient amplifying cells to expand tuft cells themselves and mucus-secreting goblet cells. However, the molecular mechanisms of tuft cell differentiation under type 2 immune responses remain unclear. The present study investigated the effects of the deletion of activating transcription factor 5 (ATF5) on the type 2 immune response triggered by succinate (a metabolite of parasites) in mice. ATF5 mRNAs were expressed in the small intestine, and the loss of the ATF5 gene did not affect the gross morphology of the tissue or the basal differentiation of epithelial cell subtypes. Succinate induced marked increases in tuft and goblet cell numbers in the ATF5-deficient ileum. Tuft cells in the ATF5-deficient ileum are assumed to be a subtype of intestinal tuft cells (Tuft-2 cells) marked by the transcription factor Spib. Exogenous IL-25 induced similar increases in tuft and goblet cell numbers in wild-type and ATF5-deficient ilea. IL-13 at a submaximal dose enhanced tuft cell differentiation more in ATF5-deficient than in wild-type intestinal organoids. These results indicate that the loss of ATF5 enhanced the tuft cell-ILC2 type 2 immune response circuit by promoting tuft cell differentiation in the small intestine, suggesting its novel regulatory role in immune responses against parasitic infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed in this study are available from the corresponding author on reasonable request.

References

  • Abe T, Kojima M, Akanuma S, Iwashita H, Yamazaki T, Okuyama R, Ichikawa K, Umemura M, Nakano H, Takahashi S, Takahashi Y (2014) N-terminal hydrophobic amino acids of activating transcription factor 5 (ATF5) protein confer interleukin 1β (IL-1β)-induced stabilization. J Biol Chem 289:3888–3900

    Article  CAS  PubMed  Google Scholar 

  • Angelastro JM, Ignatova TN, Kukekov VG, Steindler DA, Stengren GB, Mendelsohn C, Greene LA (2003) Regulated expression of ATF5 is required for the progression of neural progenitor cells to neurons. J Neurosci 23:4590–4600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arias A, Lame MW, Santarelli L, Hen R, Greene LA, Angelastro JM (2012) Regulated ATF5 loss-of-function in adult mice blocks formation and causes regression/eradication of gliomas. Oncogene 31:739–751

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Herring CA, Chen B, Kim H, Simmons AJ, Southard-Smith AN, Allaman MM, White JR, Macedonia MC, Mckinley ET, Ramirez-Solano MA, Scoville EA, Liu Q, Wilson KT, Coffey RJ, Washington MK, Goettel JA, Lau KS (2020) Succinate produced by intestinal microbes promotes specification of tuft cells to suppress ileal inflammation. Gastroenterology 159:2101–2115

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Voss U, Ekblad E (2019) A novel serotonin-containing tuft cell subpopulation in mouse intestine. Cell Tissue Res 376:189–197

    Article  CAS  PubMed  Google Scholar 

  • Chuang HC, Wang JM, Hsieh WC, Chang Y, Su IJ (2008) Up-regulation of activating transcription factor-5 suppresses SAP expression to activate T cells in hemophagocytic syndrome associated with Epstein-Barr virus infection and immune disorders. Am J Pathol 173:1397–1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerbe F, Sidot E, Smyth DJ, Ohmoto M, Matsumoto I, Dardalhon V, Cesses P, Garnier L, Pouzolles M, Brulin B, Bruschi M, Harcus Y, Zimmermann VS, Taylor N, Maizels RM, Jay P (2016) Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature 529:226–230

    Article  CAS  PubMed  Google Scholar 

  • Gerbe F, van Es JH, Makrini L, Brulin B, Mellitzer G, Robine S, Romagnolo B, Shroyer NF, NF, Bourgaux JF, Pignodel C, Clevers H, Jay P, (2011) Distinct ATOH1 and Neurog3 requirements define tuft cells as a new secretory cell type in the intestinal epithelium. J Cell Biol 192:767–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gracz AD, Samsa LA, Fordham MJ, Trotier DC, Zwarycz B, Lo YH, Bao K, Starmer J, Raab JR, Shroyer NF, Reinhardt RL, Magness ST (2018) Sox4 promotes Atoh1-independent intestinal secretory differentiation toward tuft and enteroendocrine fates. Gastroenterology 155:1508-1523.e10

    Article  CAS  PubMed  Google Scholar 

  • Haber AL, Biton M, Rogel N, Herbst RH, Shekhar K, Smillie C, Burgin G, Delorey TM, Howitt MR, Katz Y, Tirosh I, Beyaz S, Dionne D, Zhang M, Raychowdhury R, Garrett WS, Rozenblatt-Rosen O, Shi HN, Yilmaz O, Xavier RJ, Regev A (2017) A single-cell survey of the small intestinal epithelium. Nature 551:333–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatano M, Umemura M, Kimura N, Yamazaki T, Takeda H, Nakano H, Takahashi S, Takahashi Y (2013) The 5ʹ-untranslated region regulates ATF5 mRNA stability via nonsense-mediated mRNA decay in response to environmental stress. FEBS J 280:4693–4707

    Article  CAS  PubMed  Google Scholar 

  • Heijmans J, van Lidth de Jeude JF, Koo BK, Rosekrans SL, Wielenga MC, van de Wetering M, Ferrante M, Lee AS, Onderwater JJ, Paton JC, Paton AW, Mommaas AM, Kodach LL, Hardwick JC, Hommes DW, Clevers H, Muncan V, van den Brink GR, (2013) ER stress causes rapid loss of intestinal epithelial stemness through activation of the unfolded protein response. Cell Rep 3:1128–1139

    Article  CAS  PubMed  Google Scholar 

  • Howitt MR, Cao YG, Gologorsky MB, Li JA, Haber AL, Biton M, Lang J, Michaud M, Regev A, Garrett WS (2020) The taste receptor TAS1R3 regulates small intestinal tuft cell homeostasis. Immunohorizons 4:23–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howitt MR, Lavoie S, Michaud M, Blum AM, Tran SV, Weinstock JV, Gallini CA, Redding K, Margolskee RF, Osborne LC, Artis D, Garrett WS (2016) Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science 351:1329–1333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juliana CA, Yang J, Rozo AV, Good A, Groff DN, Wang SZ, Green MR, Stoffers DA (2017) ATF5 regulates β-cell survival during stress. Proc Natl Acad Sci USA 114:1341–1346

  • Lei W, Ren W, Ohmoto M, Urban JFJ, Matsumoto I, Margolskee RF, Jiang P (2018) Activation of intestinal tuft cell-expressed Sucnr1 triggers type 2 immunity in the mouse small intestine. Proc Natl Acad Sci U S A 115:5552–5557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo XC, Chen ZH, Xue JB, Zhao DX, Lu C, Li YH, Li SM, Du YW, Liu Q, Wang P, Liu M, Huanga L (2019) Infection by the parasitic helminth Trichinella spiralis activates a Tas2r-mediated signaling pathway in intestinal tuft cells. Proc Natl Acad Sci U S A 116:5564–5569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma J, Chen Y, Zhu Y, Ayed C, Fan Y, Chen G, Liu Y (2020) Quantitative analyses of the umami characteristics of disodium succinate in aqueous solution. Food Chem 316:126336

    Article  CAS  PubMed  Google Scholar 

  • Nadjsombati MS, McGinty JW, Lyons-Cohen MR, Jaffe JB, DiPeso L, Schneider C, Miller CN, Pollack JL, Nagana GGA, Fontana MF, Erle DJ, Anderson MS, Locksley RM, Raftery D, von Moltke J (2018) Detection of succinate by intestinal tuft cells triggers a type 2 innate immune circuit. Immunity 49:33-41.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano H, Iida Y, Suzuki M, Aoki M, Umemura M, Takahashi S, Takahashi Y (2016) Activating transcription factor 5 (ATF5) is essential for the maturation and survival of mouse basal vomeronasal sensory neurons. Cell Tissue Res 363:621–633

    Article  CAS  PubMed  Google Scholar 

  • O’Leary CE, Schneider C, Locksley RM (2019) Tuft cells-systemically dispersed sensory epithelia integrating immune and neural circuitry. Annu Rev Immunol 37:47–72

    Article  CAS  PubMed  Google Scholar 

  • Pascual M, Gomez-Lechon MJ, Castell JV, Jover R (2008) ATF5 is a highly abundant liver-enriched transcription factor that cooperates with constitutive androstane receptor in the transactivation of CYP2B6: implications in hepatic stress responses. Drug Metab Dispos 36:1063–1072

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Vries RG, Snippert HJ, van M, Barker N, Stange DE, van EJH, Abo A, Kujala P, Peters PJ, Clevers H, (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459:262–265

    Article  CAS  PubMed  Google Scholar 

  • Schneider C, O’Leary CE, von Moltke J, Liang HE, Ang QY, Turnbaugh PJ, Radhakrishnan S, Pellizzon M, Ma A, Locksley RM (2018) A metabolite-triggered tuft cell-ILC2 circuit drives small intestinal remodeling. Cell 174:271-284.e14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu YI, Morita M, Ohmi A, Aoyagi S, Ebihara H, Tonaki D, Horino Y, Iijima M, Hirose H, Takahashi S, Takahashi Y (2009) Fasting induced up-regulation of activating transcription factor 5 in mouse liver. Life Sci 84:894–902

    Article  CAS  PubMed  Google Scholar 

  • Trier JS, Allan CH, Marcial MA, Madara JL (1987) Structural features of the apical and tubulovesicular membranes of rodent small intestinal tuft cells. Anat Rec 219:69–77

    Article  CAS  PubMed  Google Scholar 

  • Umemura M, Kaneko Y, Tanabe R, Takahashi Y (2021) ATF5 deficiency causes abnormal cortical development. Sci Rep 11:7295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umemura M, Tsunematsu K, Shimizu YI, Nakano H, Takahashi S, Higashiura Y, Okabe M, Takahashi Y (2015) Activating transcription factor 5 is required for mouse olfactory bulb development via interneuron. Biosci Biotechnol Biochem 79:1082–1089

    Article  CAS  PubMed  Google Scholar 

  • von Moltke J, Ji M, Liang HE, Locksley RM (2016) Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature 529:221–225

    Article  Google Scholar 

  • Wang SZ, Ou J, Zhu LJ, Green MR (2012) Transcription factor ATF5 is required for terminal differentiation and survival of olfactory sensory neurons. Proc Natl Acad Sci U S A 109:18589–18594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watatani Y, Ichikawa K, Nakanishi N, Fujimoto M, Takeda H, Kimura N, Hirose H, Takahashi S, Takahashi Y (2008) Stress-induced translation of ATF5 mRNA is regulated by the 5ʹ-untranslated region. J Biol Chem 283:2543–2553

    Article  CAS  PubMed  Google Scholar 

  • Xiong Z, Zhu X, Geng J, Xu Y, Wu R, Li C, Fan D, Qin X, Du Y, Tian Y, Fan Z (2022) Intestinal Tuft-2 cells exert antimicrobial immunity via sensing bacterial metabolite N-undecanoylglycine. Immunity 55:686–700

    Article  CAS  PubMed  Google Scholar 

  • Yamashita J, Ohmoto M, Yamaguchi T, Matsumoto I, Hirota J (2017) Skn-1a/Pou2f3 functions as a master regulator to generate Trpm5-expressing chemosensory cells in mice. PLoS ONE 12:e0189340

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou D, Palam LR, Jiang L, Narasimhan J, Staschke KA, Wek RC (2008) Phosphorylation of eIF2 directs ATF5 translational control in response to diverse stress conditions. J Biol Chem 283:7064–7073

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Kazuma Tomizuka for help with intestinal organoid cultures. We are grateful to Ms. Yukino Deguchi, Ms. Nozomi Josaka, and Mr. Katsutoshi Katsumata for their support with the preparation of mouse intestinal tissues.

Funding

This work was supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (grant number 22K08064).

Author information

Authors and Affiliations

Authors

Contributions

HN conceived the study and designed the project with ST and YT. MU maintained the ATF5-deficient mouse line. HN, AH, UI, RK, EM, KN, TM, MO, and MY performed experiments and analyzed data. HN wrote the manuscript, and all authors approved the final version of the manuscript.

Corresponding author

Correspondence to Haruo Nakano.

Ethics declarations

Ethical approval

All mouse studies were approved by the Institutional Animal Experiment Committee of the university and were performed in accordance with institutional and governmental guidelines.

Consent to participate

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2597 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakano, H., Hata, A., Ishimura, U. et al. Activating transcription factor 5 (ATF5) controls intestinal tuft and goblet cell expansion upon succinate-induced type 2 immune responses in mice. Cell Tissue Res 393, 343–355 (2023). https://doi.org/10.1007/s00441-023-03781-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-023-03781-7

Keywords

Navigation