Skip to main content

Advertisement

Log in

Ascl1-expressing cell differentiation in initially developed taste buds and taste organoids

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Mammalian taste bud cells are composed of several distinct cell types and differentiated from surrounding tongue epithelial cells. However, the detailed mechanisms underlying their differentiation have yet to be elucidated. In the present study, we examined an Ascl1-expressing cell lineage using circumvallate papillae (CVP) of newborn mice and taste organoids (three-dimensional self-organized tissue cultures), which allow studying the differentiation of taste bud cells in fine detail ex vivo. Using lineage-tracing analysis, we observed that Ascl1 lineage cells expressed type II and III taste cell markers both CVP of newborn mice and taste organoids. However, the coexpression rate in type II cells was lower than that in type III cells. Furthermore, we found that the generation of the cells which express type II and III cell markers was suppressed in taste organoids lacking Ascl1-expressing cells. These findings suggest that Ascl1-expressing precursor cells can differentiate into both type III and a subset of type II taste cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All the relevant data is provided in this manuscript and associated figures.

References

  • Barlow LA (2021) The sense of taste: development, regeneration, and dysfunction. Wires Mech Dis 14:e1547

    PubMed  Google Scholar 

  • Barlow LA (2015) Progress and renewal in gustation: new insights into taste bud development. Development 142:3620–3629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barlow LA, Klein OD (2015) Developing and regenerating a sense of taste. In: Current Topics in Developmental Biology. Elsevier, pp 401–419

  • Beidler LM, Smallman RL (1965) Renewal of cells within taste buds. J Cell Biol 27:263–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castillo-Azofeifa D, Losacco JT, Salcedo E, Golden EJ, Finger TE, Barlow LA (2017) Sonic hedgehog from both nerves and epithelium is a key trophic factor for taste bud maintenance. Development 144:3054–3065

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chandrashekar J, Yarmolinsky D, von Buchholtz L, Oka Y, Sly W, Ryba NJ, Zucker CS (2009) The taste of carbonation. Science 326:443–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhari N, Roper SD (2010) The cell biology of taste. J Cell Biol 190:285–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clapp TR, Yang R, Stoick CL, Kinnamon SC, Kinnamon JC (2004) Morphologic characterization of rat taste receptor cells that express components of the phospholipase C signaling pathway. J Comp Neurol 468:311–321

    Article  CAS  PubMed  Google Scholar 

  • DeFazio RA, Dvoryanchikov G, Maruyama Y, KimJW PE, Roper SD, Chaudhari N (2006) Separate populations of receptor cells and presynaptic cells in mouse taste buds. J Neurosci 26:3971–3980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delay RJ, Kinnamon JC, Roper SD (1986) Ultrastructure of mouse vallate taste buds: II. Cell types and cell lineage. J Comp Neurol 253:242–252

    Article  CAS  PubMed  Google Scholar 

  • Farbman AI (1980) Renewal of taste bud cells in rat circumvallate papillae. Cell Tissue Kinet 13:349–357

    CAS  PubMed  Google Scholar 

  • Finger TE, Simon SA (2000) Cell biology of taste epithelium. In: Finger TE, Silver WL, Restrepo D (eds) The Neurobiology of Taste and Smell. Wiley-Liss, New York, pp 287–314

    Google Scholar 

  • Gaillard D, Xu M, Liu F, Millar SE, Barlow LA (2015) β-catenin signaling biases multipotent lingual epithelial progenitors to differentiate and acquire specific taste cell fates. PLOS Genet 11:e1005208

    Article  PubMed  PubMed Central  Google Scholar 

  • Golden EJ, Larson ED, Shechtman LA, Trahan GD, Gaillard D, Fellin TJ, Scott JK, Jones KL, Barlow LA (2021) Onset of taste bud cell renewal starts at birth and coincides with a shift in SHH function. eLife 10:e64013

  • Guillemot F, Joyner AL (1993) Dynamic expression of the murine Achaete-Scute homologue Mash-1 in the developing nervous system. Mech Dev 42:171–185

    Article  CAS  PubMed  Google Scholar 

  • Guillemot F, Lo LC, Johnson JE, Auerbach A, Anderson DJ, Joyner AL (1993) Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell 75:463–476

    Article  CAS  PubMed  Google Scholar 

  • Hsu CC, Seta Y, Matsuyama K, Kataoka S, Nakatomi M, Toyono T, Gunjigake KK, Kuroishi KN, Kawamoto T (2021) Mash1-expressing cells may be relevant to type III cells and a subset of PLCβ2-positive cell differentiation in adult mouse taste buds. Cell Tissue Res 383:667–675

    Article  CAS  PubMed  Google Scholar 

  • Huang AL, Chen X, Hoon MA, Chandrashekar J, Guo W, Tränkner D, Ryba NJP, Zuker CS (2006) The cells and logic for mammalian sour taste detection. Nature 442:934–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang YA, Maruyama Y, Stimac R, Roper SD (2008) Presynaptic (type III) cells in mouse taste buds sense sour (acid) taste: sour taste mechanisms in mouse taste buds. J Physiol 586:2903–2912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim MR, Kusakabe Y, Miura H, Shindo Y, Ninomiya Y, Hino A (2003) Regional expression patterns of taste receptors and gustducin in the mouse tongue. Biochem Biophys Res Commun 312:500–506

    Article  CAS  PubMed  Google Scholar 

  • Kito-Shingaki A, Seta Y, Toyono T, Kataoka S, Kakinoki Y, Yanagawa Y, Toyoshima K (2014) Expression of GAD67 and Dlx5 in the taste buds of mice genetically lacking Mash1. Chem Senses 39:403–414

    Article  CAS  PubMed  Google Scholar 

  • Lindeman B (1996) Taste reception. Physiol Rev 76:719–766

    Article  Google Scholar 

  • Lin X, Lu C, Ohmoto M, Choma K, Margolskee RF, Matsumoto I, Jiang P (2021) R-spondin substitutes for neuronal input for taste cell regeneration in adult mice. Proc Natl Acad Sci 118:e2001833118

    Article  CAS  PubMed  Google Scholar 

  • Lo LC, Johnson JE, Wuenschell CW, Saito T, Anderson DJ (1991) Mammalian achaete-scute homolog 1 is transiently expressed by spatially restricted subsets of early neuroepithelial and neural crest cells. Genes Dev 5:1524–1537

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto I, Ohmoto M, Narukawa M, Yoshihara Y, Abe K (2011) Skn-1a (Pou2f3) specifies taste receptor cell lineage. Nat Neurosci 14:685–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumura H, Hasuwa H, Inoue N, Ikawa M, Okabe M (2004) Lineage-specific cell disruption in living mice by Cre-mediated expression of diphtheria toxin A chain. Biochem Biophys Res Commun 321:275–279

    Article  CAS  PubMed  Google Scholar 

  • Mistretta CM, Bosma JF (1972) Topographical and histological study of the developing rat tongue, palate and taste buds. Third Symp Oral Sensat Percept Mouth Infant Springf I1:163–187

    Google Scholar 

  • Miura H, Kato H, Kusakabe Y, Ninomiya Y, Hino A (2005) Temporal changes in NCAM immunoreactivity during taste cell differentiation and cell lineage relationships in taste buds. Chem Senses 30:367–375

    Article  CAS  PubMed  Google Scholar 

  • Miura H, Kusakabe Y, Harada S (2006) Cell lineage and differentiation in taste buds. Arch Histol Cytol 69:209–225

    Article  CAS  PubMed  Google Scholar 

  • Miura H, Scott JK, Harada S, Barlow LA (2014) Sonic hedgehog-expressing basal cells are general post-mitotic precursors of functional taste receptor cells. Dev Dyn 243:1286–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray R (1973) The ultrastructure of taste buds. In: Friedmann I (ed) The Ultrastructure of Sensory Organs. North Holland, Amsterdam, pp 1–81

    Google Scholar 

  • Nakayama A, Miura H, Shindo Y, Kusakabe Y, Tomonari H, Harada S (2008) Expression of the basal cell markers of taste buds in the anterior tongue and soft palate of the mouse embryo. J Comp Neurol 509:211–224

    Article  PubMed  Google Scholar 

  • Nguyen HM, Barlow LA (2010) Differential expression of a BMP4 reporter allele in anterior fungiform versus posterior circumvallate taste buds of mice. BMC Neurosci 11:129

    Article  PubMed  PubMed Central  Google Scholar 

  • Ohmoto M, Kitamoto S, Hirota J (2021) Expression of Eya1 in mouse taste buds. Cell Tissue Res 383:979–986

    Article  CAS  PubMed  Google Scholar 

  • Perea-Martinez I, Nagai T, Chaudhari N (2013) Functional cell types in taste buds have distinct longevities. PLoS ONE 8:e53399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin Y, Sukumaran SK, Jyotaki M et al (2018) Gli3 is a negative regulator of Tas1r3-expressing taste cells. PLOS Genet 14:e1007058

    Article  PubMed  PubMed Central  Google Scholar 

  • Ren W, Aihara E, Lei W, Gheewala N, Uchiyama H, Margolskee RF, Iwatsuki K, Jiang P (2017) Transcriptome analyses of taste organoids reveal multiple pathways involved in taste cell generation. Sci Rep 7:4004

    Article  PubMed  PubMed Central  Google Scholar 

  • Ren W, Lewandowski BC, Watson J, Aihara E, Iwatsuki K, Bachmanov AA, Margolskee RF, Jiang P (2014) Single Lgr5- or Lgr6-expressing taste stem/progenitor cells generate taste bud cells ex vivo. Proc Natl Acad Sci 111:16401–16406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuurmans C, Guillemot F (2002) Molecular mechanisms underlying cell fate specification in the developing telencephalon. Curr Opin Neurobiol 12:26–34

    Article  CAS  PubMed  Google Scholar 

  • Seta Y, Kataoka S, Toyono T, Toyoshima K (2007) Immunohistochemical localization of aromatic L-amino acid decarboxylase in mouse taste buds and developing taste papillae. Histochem Cell Biol 127:415–422

    Article  CAS  PubMed  Google Scholar 

  • Seta Y, Oda M, Kataoka S, Toyono T, Toyoshima K (2011) Mash1 is required for the differentiation of AADC-positive type III cells in mouse taste buds. Dev Dyn 240:775–784

    Article  CAS  PubMed  Google Scholar 

  • Seta Y, Seta C, Barlow LA (2003) Notch-associated gene expression in embryonic and adult taste papillae and taste buds suggests a role in taste cell lineage decisions. J Comp Neurol 464:49–61

    Article  CAS  PubMed  Google Scholar 

  • Seta Y, Stoick-Cooper CL, Toyono T, Kataoka S, Toyoshima K, Barlow LA (2006) The bHLH transcription factors, Hes6 and Mash1, are expressed in distinct subsets of cells within adult mouse taste buds. Arch Histol Cytol 69:189–198

    Article  CAS  PubMed  Google Scholar 

  • Stone LM, Finger TE, Tam PP, Tan SS (1995) Taste receptor cells arise from local epithelium, not neurogenic ectoderm. Proc Natl Acad Sci 92:1916–1920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takagi H, Seta Y, Kataoka S, Nakatomi M, Toyono T, Kawamoto T (2018) Mash1-expressing cells could differentiate to type III cells in adult mouse taste buds. Anat Sci Int 93:422–429

    Article  CAS  PubMed  Google Scholar 

  • Takai S, Watanabe Y, Sanematsu K, Yoshida R, Margolskee RF, Jiang P, Atsuta I, Koyano K, Ninomiya Y, Shigemura N (2019) Effects of insulin signaling on mouse taste cell proliferation. PLoS ONE 14:e0225190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomita K, Nakanishi S, Guillemot F, Kageyama R (1996) Mash1 promotes neuronal differentiation in the retina. Genes Cells 1:765–774

    Article  CAS  PubMed  Google Scholar 

  • Yang R, Stoick CL, Kinnamon JC (2004) Synaptobrevin-2-like immunoreactivity is associated with vesicles at synapses in rat circumvallate taste buds. J Comp Neurol 471:59–71

    Article  CAS  PubMed  Google Scholar 

  • Yee KK, Li Y, Redding KM, Iwatsuki K, Margolskee RF, Jiang P (2013) Lgr5-EGFP marks taste bud stem/progenitor cells in posterior tongue. Stem Cells Dayt Ohio 31:992–1000

    Article  CAS  Google Scholar 

  • Zhou Y, Liu H-X, Mistretta CM (2006) Bone morphogenetic proteins and noggin: inhibiting and inducing fungiform taste papilla development. Dev Biol 297:198–213

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Jeffrey Whitsett (University of Cincinnati) for the R-spondin2 stable cell line, Dr. Hans Clevers (Hubrecht Institute) and Dr. Toshiro Sato (Keio University) for the Wnt3a stable cell line, and Dr. Peihua Jiang (Monell Chemical Senses Center) for the Noggin stable cell line. We thank Ms. M. Ishikawa for secretarial assistance.

Funding

This work was supported by the Japan Society for the Promotion of Science KAKENHI grant JP20K18461.

Author information

Authors and Affiliations

Authors

Contributions

Y.S., conceptualization and study design; K.M., S.T., N.S., T.T., and Y.S., methodology; K.M., S.K., and T.T., investigation; K.M., T.T., and Y.S., project administration; K.M., M.N., and S.K., visualization; K.M., writing—original draft; Y.S., T.K., and M.N., writing—review and editing.

Corresponding author

Correspondence to Kae Matsuyama.

Ethics declarations

Ethics approval

All animal experiments were approved by Kyushu Dental University Animal Care (approval No: 20–03).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuyama, K., Takai, S., Shigemura, N. et al. Ascl1-expressing cell differentiation in initially developed taste buds and taste organoids. Cell Tissue Res 392, 631–641 (2023). https://doi.org/10.1007/s00441-023-03756-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-023-03756-8

Keywords

Navigation