Skip to main content
Log in

Role of the bovine PRAMEY protein in sperm function during in vitro fertilization (IVF)

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Preferentially expressed antigen in melanoma (PRAME) is a cancer/testis antigen (CTA) that is predominantly expressed in normal male gonad tissues and a variety of tumors. PRAME proteins are present in the acrosome and sperm tail, but their role in sperm function is unknown. The objective of this study was to examine the function of the bovine Y-linked PRAME (PRAMEY) during spermatozoal capacitation, the acrosome reaction (AR), and fertilization. Freshly ejaculated spermatozoa were induced to capacitate and undergo AR in vitro. Western blotting results revealed a decrease in the PRAMEY protein in capacitated spermatozoa, and the release of the PRAMEY protein from the acrosome during the AR, suggesting its involvement in sperm capacitation and AR. IVF was performed using in vitro matured bovine oocytes and cauda epididymal spermatozoa either treated with PRAMEY antibody, rabbit IgG, or DPBS. Sperm-egg binding and early embryos were examined at 6 and 45 h post IVF, respectively. The number of spermatozoa that bound per oocyte was nearly two-fold greater in the PRAMEY antibody treatment group (34.4) when compared to both the rabbit IgG (17.6) and DPBS (18.1) controls (P < 0.01). Polyspermy rate in the antibody-treated group (18.9%) was three-fold greater than the rabbit IgG control (6.0%) (P < 0.01). The results indicate that PRAMEY may play a role in anti-polyspermy defense. This study thus provides the initial evidence for the involvement of the PRAME protein family in sperm function and fertilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  • Abbott A, Ducibella T (2001) Calcium and the control of mammalian cortical granule exocytosis. Front Biosci 6:D792-806

    Article  CAS  PubMed  Google Scholar 

  • Aitken R, Paterson M, Fisher H, Buckingham D, van Duin M (1995) Redox regulation of tyrosine phosphorylation in human spermatozoa and its role in the control of human sperm function. J Cell Sci 108:2017–2025

    Article  CAS  PubMed  Google Scholar 

  • Amann R, Griel LJ (1974) Fertility of bovine spermatozoa from rete testis, cauda epididymidis, and ejaculated sperm. J Dairy Sci 57:212–219

    Article  CAS  PubMed  Google Scholar 

  • Austin C (1951) Observations on the penetration of the sperm into the mammalian egg. Aust J Sci Res B 4:581

    Article  CAS  PubMed  Google Scholar 

  • Baldi E, Luconi M, Bonaccorsi L, Krausz C, Forti G (1996) Human sperm activation during capacitation and acrosome reaction: role of calcium, protein phosphorylation and lipid remodelling pathways. Front Biosci 1:189–205

    Article  Google Scholar 

  • Bergstein-Galan T, Weiss R, Bertol M, Abreu A, Busato E, Kozicki L, Bicudo S (2017) Quality and fertility of frozen ovine spermatozoa from epididymides stored at room temperature (18–25 °C) for up to 48 h post mortem. Theriogenology 96:69–75

    Article  PubMed  Google Scholar 

  • Birtle Z, Goodstadt L, Ponting C (2005) Duplication and positive selection among hominin-specific PRAME genes. BMC Genomics 19:1–19

    Google Scholar 

  • Brucker C, Kaßner G, Löser C, Hinrichsen M, Lipford G (1994) Fertilization and early embryology: progesterone-induced acrosome reaction: potential role for sperm acrosome antigen-1 in fertilization. Hum Reprod 9:1897–1902

    Article  CAS  PubMed  Google Scholar 

  • Burks D, Carballada R, Moore H, Saling P (1995) Interaction of a tyrosine kinase from human sperm with the zona pellucida at fertilization. Science 269:83–86

    Article  CAS  PubMed  Google Scholar 

  • Ceulmans H, Bollen M (2004) Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiol Rev 84:1–39

    Article  Google Scholar 

  • Chang M (1951) Fertilizing capacity of spermatozoa deposited into the fallopian tubes. Nature 168:697

    Article  CAS  PubMed  Google Scholar 

  • Chang T, Yang Y, Retzel E, Liu W (2013) Male-specific region of the bovine Y chromosome is gene rich with a high transcriptomic activity in testis development. PNAS 110:12373–12378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang T, Yang Y, Yasue H, Bharti A, Retzel E, Liu W (2011) The expansion of the PRAME gene family in Eutheria. PLoS ONE 6:e16867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Zheng Y, Lei A, Zhang H, Niu H, Li X, Zhang P, Liao M, Lv Y, Zhu Z, Pan C, Dong W, Chen H, Wu D, Liu W, Hamer G, Zeng W (2020) Early cleavage of preimplantation embryos is regulated by tRNAGln-TTG-derived small RNAs present in mature spermatozoa. J Biol Chem 295:10885–10900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chernoff H, Dukelow W (1969) Decapacitation factor purification with lipid solvents. J Reprod Fertil 18:141–144

    Article  CAS  PubMed  Google Scholar 

  • Choy M, Moon T, Ravindran R, Bray J, Robinson L, Archuleta T, Shi W, Peti W, Page TK, R, (2019) SDS22 selectively recognizes and traps metal-deficient inactive PP1. PNAS 116:20472–20481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Church D, Goodstadt L, Hillier L, Zody M, Goldstein S, She X, Bult C, Agarwala R, Cherry J, Dicuccio M, Hlavina W, Marques A, Graves T, Zhou S, Teague B, Potamousis K, Churas C, Place M, Herschleb J, Forrest D, Amos-landgraf J, Schwartz D, Lindblad CZ, K, Eichler E, Ponting, C, (2009) Lineage-specific biology revealed by a finished genome assembly of the mouse. Plos Biol 7:e1000112

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohen P (2002) Protein phosphatase 1—targeted in many directions. J Cell Sci 115:241–256

    Article  CAS  PubMed  Google Scholar 

  • Costessi A, Mahrour N, Tijchon E, Stunnenberg R, Stoel M, Jansen P, Sela D, Martin-Brown S, Washburn M, Florens L (2011) The tumour antigen PRAME is a subunit of a Cul2 ubiquitin ligase and associates with active NFY promoters. EMBO 30:3786–3798

    Article  CAS  Google Scholar 

  • da Cruz e Silva E, Fox C, Ouimet C, Gustafson E, Watson S, Greengard P, (1995) Differential expression of protein phosphatase 1 isoforms in mammalian brain. J Neurosci 15:3375–3389

    Article  PubMed  Google Scholar 

  • Davis B (1978) Inhibition of fertilizing capacity in mammalian spermatozoa by natural and synthetic vesicles. Kabara JJ (ed), Symp Pharmacol Eff Lipids Champaign, Am Oil Chem Soc 145–157

  • Edwards J, Hansen P (1996) Elevated temperature increases heat shock protein 70 synthesis in bovine two-cell embryos and compromises function of maturing oocytes. Biol Reprod 55:340–346

    Article  CAS  Google Scholar 

  • Epping M, Hart A, Glas A, Krijgsman O, Bernards R (2008) PRAME expression and clinical outcome of breast cancer. Br J Cancer 99:398–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epping MT, Wang L, Edel MJ, Carlée L, Hernandez M, Bernards R (2005) The human tumor antigen PRAME is a dominant repressor of retinoic acid receptor signaling. Cell 122:835–847

    Article  CAS  PubMed  Google Scholar 

  • Fardilha M, Esteves S, Korrodi-Gregorio L, Pelech S, da Cruz ESOA, da Cruz ESA (2011) Protein phosphatase 1 complexes modulate sperm motility and present novel targets for male infertility. Mol Hum Reprod 17:466–477

    Article  CAS  PubMed  Google Scholar 

  • Huang Z, Khatra B, Bollen M, Carr D, Vijayaraghavan S (2002) Sperm PP1γ2 is regulated by a homologue of the yeast protein phosphatase binding protein sds22. Biol Reprod 67:1936–1942

    Article  CAS  PubMed  Google Scholar 

  • Igboeli G, Foote R (1968) Maturational changes in bull epididymal spermatozoa. J Dairy Sci Sci 51:1703–1705

    Article  CAS  Google Scholar 

  • Ikeda H, Lethe B, van Baren N, de Smet C, Vitale M, Moretta A, Boon T, Coulie P (1997) Characterization of an antigen that is recognized on a melanoma showing partial HLA loss by CTL expressing an NK inhibitory receptor. Immunity 6:199–208

    Article  CAS  PubMed  Google Scholar 

  • Just E (1919) The fertilization reaction in Echinarachinus parma. Biol Bull 36:1–10

    Article  CAS  Google Scholar 

  • Kern C, Feitosa W, Liu W-S (2022) The dynamic of PRAMEY isoforms in testis and epididymis suggests their involvement in spermatozoa maturation. Front Genet 13:846345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kern C, Yang M, Liu W (2021) The PRAME family of cancer testis antigens is essential for germline development and gametogenesis. Biol Reprod 105:290–304

    Article  PubMed  Google Scholar 

  • Kitagawa Y, Sasaki K, Shima H, Shibuya M, Sugimura T, Nagao M (1990) Protein phosphatases possibly involved in rat spermatogenesis. Biochem Biophys Res Commun 171:230–235

    Article  CAS  PubMed  Google Scholar 

  • Kobe B, Kajava A (2001) The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol 11:725–732

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre R, Chenoweth P, Drost M, LeClear C, MacCubbin M, Dutton J, Suarez S (1995) Characterization of the oviductal sperm reservoir in cattle. Biol Reprod 53:1066–1074

    Article  CAS  PubMed  Google Scholar 

  • Liu W-S, Zhao Y, Lu C, Ning G, Ma Y, Diaz F, O’Connor M (2017) A novel testis-specific protein, PRAMEY, is involved in spermatogenesis in cattle. Reproduction 153:847–863

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Somanath P, Huang Z, Vijayaraghavan S (2003) Binding and inactivation of the germ cell-specific protein phosphatase PP1gamma2 by sds22 during epididymal sperm maturation. Biol Reprod 69:1572–1579

    Article  CAS  PubMed  Google Scholar 

  • O’Flaherty C, de Lamirande E, Gagnon C (2006) Reactive oxygen species modulate independent protein phosphorylation pathways during human sperm capacitation. Free Radic Biol Med 40:1045–1055

    Article  PubMed  Google Scholar 

  • Ojagi M, Kastelic J, Thundathil J (2017) Testis-specific isoform of angiotensin-converting enzyme (tACE) is involved in the regulation of bovine sperm capacitation. Mol Reprod Dev 84:376–388

    Article  Google Scholar 

  • Oliphant G, Reynold A, Thomas T (1985) Sperm surface components involved in the control of the acrosome reaction. Am J Anat 174:269–284

    Article  CAS  PubMed  Google Scholar 

  • Parrish J (2014) Bovine In vitro fertilization: In vitro oocyte maturation and sperm capacitation with heparin. Theriogenology 81:67–73

    Article  PubMed  Google Scholar 

  • Parrish J, Susko-Parrish J, First N (1989) Capacitation of bovine sperm by heparin: inhibitory effect of glucose and role of intracellular pH. Biol Reprod 41:683–689

    Article  CAS  PubMed  Google Scholar 

  • Parrish J, Susko-Parrish J, Winer M, First N (1988) Capacitation of bovine sperm by heparin. Biol Reprod 38:1171–1180

    Article  CAS  PubMed  Google Scholar 

  • Paula-Lopes F, de Moraes AAS, Edwards J, Justice J, Hansen P (1998) Regulation of preimplantation development of bovine embryos by interleukin-1β. Biol Reprod 59:1406–1412

    Article  CAS  PubMed  Google Scholar 

  • Sellem E, Marthey S, Rau A, Jouneau L, Bonnet A, Le Danvic C, Guyonnet B, Kiefer H, Jammes H, Schibler L (2021) Dynamics of cattle sperm sncRNAs during maturation, from testis to ejaculated sperm. Epigenetic & Chromatin 14:24

    Article  CAS  Google Scholar 

  • Senger PL (2012) Pathways to pregnancy and parturition, 3rd edn. Current Conceptions, Inc.

  • Shima H, Haneji T, Hatano Y, Kasugai I, Sugimura T, Nagao M (1993a) Protein phosphatase 1 gamma 2 is associated with nuclei of meiotic cells in rat testis. Biochem Biophys Res Commun 194:930–937

    Article  CAS  PubMed  Google Scholar 

  • Shima H, Hatano Y, Chun Y, Sugimura T, Zhang Z, Lee E, Nagao M (1993b) Identification of PP1 catalytic subunit isotypes PP1 gamma 1, PP1 delta and PP1 alpha in various rat tissues. Biochem Biophys Res Commun 192:1289–1296

    Article  CAS  PubMed  Google Scholar 

  • Smith G, Wolf D, Trautman K, da Cruz e Silva E, Greengard P, Vijayaraghavan S, (1996) Primate sperm contain protein phosphatase 1, a biochemical mediator of motility. Biol Reprod 54:719–727

    Article  CAS  PubMed  Google Scholar 

  • Smith G, Wolf D, Trautman K, Vijayaraghavan S (1999) Motility potential of macaque epididymal sperm: the role of protein phosphatase and glycogen synthase kinase-3 activities. J Androl J Androl 20:47–53

    CAS  PubMed  Google Scholar 

  • Suarez S (1996) Hyperactivated motility in sperm. J Androl 17:331–335

    CAS  PubMed  Google Scholar 

  • Sutovsky P, Manandhar G, McCauley T, Caamaño J, Sutovsky M, Thompson W, Day B (2004) Proteasomal interference prevents zona pellucida penetration and fertilization in mammals. Biol Reprod 71:1624–1637

    Article  Google Scholar 

  • Sutovsky P, Ramalho-Santos J, Moreno R, Oko R, Hewitson L, Schatten G (1999) On-stage selection of single round spermatids using a vital, mitochondrion-specific fluorescent probe MitoTracker(TM) and high resolution differential interference contrast microscopy. Hum Reprod 14:2301–2312

    Article  CAS  PubMed  Google Scholar 

  • Topher-Petersen E, Wagner A, Friedrich J, Petrunkina A, Ekhlasi-Hundrieser M, Waberski D, Drommer W (2002) Function of the mammalian oviductal sperm reservoir. J Exp Zool 292:210–215

    Article  Google Scholar 

  • Tribulo P, Rivera R, Ortega Obando M, Jannaman E, Hansen P (2019) Production and culture of the bovine embryo. In: Herrick J. (eds) Comparative Embryo Culture. Methods in Molecular Biology. Springer Nature, New York, pp 115–129

  • Vijayaraghavan S, Stephen D, Trautman K, Smith G, Khatra B, da Cruz e Silva E, Greengard P, (1996) Sperm motility development in the epididymis is associated with decreased glycogen synthase kinase-3 and protein phosphatase 1 activity. Biol Reprod 54:709–718

    Article  CAS  PubMed  Google Scholar 

  • Virshup D, Shenolikar S (2009) From promiscuity to precision: protein phosphatases get a makeove. Mol Cell 33:537–545

    Article  CAS  PubMed  Google Scholar 

  • Visconti P, Bailey J, Moore G, Pan D, Olds-Clarke P, Kopf G (1995) Capacitation of mouse spermatozoa. I. Correlation between the capacitation state and protein tyrosine phosphorylation. Development 121:1129–1137

    Article  CAS  PubMed  Google Scholar 

  • Visconti P, Kopf G (1998) Regulation of protein phosphorylation during sperm capacitation. Biol Reprod 59:1–6

    Article  CAS  PubMed  Google Scholar 

  • Visconti P, Stewart-Savage J, Blasco A, Battaglia L, Miranda P, Kopf G, Tezón J (1999) Roles of bicarbonate, cAMP, and protein tyrosine phosphorylation on capacitation and the spontaneous acrosome reaction of hamster sperm. Biol Reprod 61:76–84

    Article  CAS  PubMed  Google Scholar 

  • Visconti P, Westbrook V, Chertihin O, Demarco I, Sleight S, Diekman A (2002) Novel signaling pathways involved in sperm acquisition of fertilizing capacity. J Reprod Immunol 53:133–150

    Article  CAS  PubMed  Google Scholar 

  • Vredenburgh-Wilberg W, Parrish J (1995) Intracellular pH of bovine sperm increases during capacitation. Mol Reprod Dev 40:490–502

    Article  CAS  PubMed  Google Scholar 

  • Wadelin F, Fulton J, McEwan P, Spriggs K, Emsley J, Heery D (2010) Leucine-rich repeat protein PRAME: expression, potential functions and clinical implications for leukemia. Mol Cancer 9:1–10

    Article  Google Scholar 

  • Yanagimachi R (1994) Mammalian fertilization. In: Knobil E, Neill J (eds) The Physiology of Reproduction. Raven Press Ltd., New York, pp 189–317

    Google Scholar 

  • Yue X, Chang T, Dejarnette J, Marshall C, Lei C, Liu W (2013) Copy number variation of PRAMEY across breeds and its association with male fertility in Holstein sires. J Dairy Sci 96:8024–8034

    Article  CAS  PubMed  Google Scholar 

  • Zeginiadou T, Papadimas J, Mantalenakis S (2000) Acrosome reaction: methods for detection and clinical significance. Andrologia 32:335–343

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y (2013) Characterization of the PRAME/PRAMEY gene family during spermatogenesis. The Pennsylvania State University.

Download references

Acknowledgements

The authors would like to thank Mr. Duane Eichenlaub and Mr. Douglas Nicholas at Nicholas Meat, LLC (Loganton, PA) for providing bovine testes and ovaries. The authors are also grateful to Dr. Bo Harstine at Select Sires, Inc. for providing fresh bovine semen samples.

Funding

This work is supported by the National Institute of Food and Agriculture (NIFA), United States Department of Agriculture (USDA), grant no. 2018–67015-27576 (WSL) and grant no. 2021–67015-33404 (PS).

Author information

Authors and Affiliations

Authors

Contributions

WL conceived and designed the research project. CK, WW, CL, JZ, YZ, OMOG, PS, and FD participated in the IVF experimental design. CK, WW, CL, JZ, and YZ carried out IVF experiments. CK, WW, CL, JZ, YZ, OMOG, PS, FD, and WL contributed to the interpretation of the IVF results. CK carried out sperm capacitation and acrosome reaction experiments and data analysis. PS performed PRAMEY/PNA IF staining on spermatids/spermatozoa. CK took the lead in writing the manuscript. WL and PS provided critical feedback and helped shape the research, analysis, and manuscript. All authors approved the manuscript.

Corresponding author

Correspondence to Wan-Sheng Liu.

Ethics declarations

Ethical approval

Not applicable.

Informed consent

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kern, C., Wu, W., Lu, C. et al. Role of the bovine PRAMEY protein in sperm function during in vitro fertilization (IVF). Cell Tissue Res 391, 577–594 (2023). https://doi.org/10.1007/s00441-022-03717-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-022-03717-7

Keywords

Navigation