Skip to main content

Advertisement

Log in

Th22 cells induce Müller cell activation via the Act1/TRAF6 pathway in diabetic retinopathy

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

T helper 22 (Th22) cells have been implicated in diabetic retinopathy (DR), but it remains unclear whether Th22 cells involve in the pathogenesis of DR. To investigate the role of Th22 cells in DR mice, the animal models were established by intraperitoneal injection of STZ and confirmed by fundus fluorescein angiography and retinal haematoxylin–eosin staining. IL-22BP was administered by intravitreal injection. IL-22 level was measured by ELISA in vivo and in vitro. The expression of IL-22Rα1 in the retina was assessed by immunofluorescence. We assessed GFAP, VEGF, ICAM-1, inflammatory-associated factors and the integrity of blood–retinal barrier in control, DR, IL-22BP, and sham group. Müller cells were co-cultured with Th22 cells, and the expression of the above proteins was measured by immunoblotting. Plasmid transfection technique was used to silence Act1 gene in Müller cells. Results in vivo and in vitro indicated that Th22 cells infiltrated into the DR retinal and IL-22Rα1 expressed in Müller cells. Th22 cells promoted Müller cells activation and inflammatory factor secretion by secreting IL-22 compared with high-glucose stimulation alone. In addition, IL-22BP ameliorated the pathological alterations of the retina in DR. Inhibition of the inflammatory signalling cascade through Act1 knockdown alleviated DR-like pathology. All in all, the results suggested that Th22 cells infiltrated into the retina and secreted IL-22 in DR, and then IL-22 binding with IL-22Rα1 activated the Act1/TRAF6 signal pathway, and promoted the inflammatory of Müller cells and involved the pathogenesis of DR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

All relevant data generated or analyzed during this study are included in this published article.

Abbreviations

DR:

Diabetic retinopathy

BRB:

Blood–retinal barrier

iBRB:

Inner blood–retinal barrier

oBRB:

Outer blood–retinal barrier

STZ:

Streptozotocin

FFA:

Fundus fluorescein angiography;

HE:

Haematoxylin-eosin staining;

GFAP:

Glial fibrillary acidic protein

VEGF:

Vascular endothelial growth factor;

ICAM-1:

Intercellular adhesion molecule-1

GS:

Glutamate synthase

IL-22BP:

IL-22 binding protein

References

  • Altmann C, Schmidt MHH (2018) The role of microglia in diabetic retinopathy: inflammation, microvasculature defects and neurodegeneration. Int J Mol Sci 19

  • Arif S, Pujol-Autonell I, Eichmann M (2020) Assessing effector T cells in type 1 diabetes. Curr Opin Endocrinol Diabetes Obes 27:240–247

    Article  CAS  Google Scholar 

  • Azizi G, Simhag A, El Rouby NM, Mirshafiey A (2015) Th22 cells contribution in immunopathogenesis of rheumatic diseases. Iran J Allergy Asthma Immunol 14:246–254

    Google Scholar 

  • Bell K, Holz A, Ludwig K, Pfeiffer N, Grus FH (2017) Elevated regulatory T cell levels in glaucoma patients in comparison to healthy controls. Curr Eye Res 42:562–567

    Article  CAS  Google Scholar 

  • Bhuyan ZA, Asanoma M, Iwata A, Ishifune C, Maekawa Y, Shimada M, Yasutomo K (2014) Abrogation of Rbpj attenuates experimental autoimmune uveoretinitis by inhibiting IL-22-producing CD4+ T cells. PLoS ONE 9:e89266

    Article  Google Scholar 

  • Che Y, Su Z, Xia L (2020) Effects of IL-22 on cardiovascular diseases. Int Immunopharmacol 81:106277

    Article  CAS  Google Scholar 

  • Chen WY, Qian Y, Chen TY, Gu XP (2021) Research progress of CD4(+)T cells-mediated regulation of neuroinflammation involved in neurodegenerative diseases. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 43:628–633

    CAS  Google Scholar 

  • Coughlin BA, Feenstra DJ, Mohr S (2017) Müller cells and diabetic retinopathy. Vision Res 139:93–100

    Article  Google Scholar 

  • Couturier A, Blot G, Vignaud L, Nanteau C, Slembrouck-Brec A, Fradot V, Acar N, Sahel JA, Tadayoni R, Thuret G, Sennlaub F, Roger JE, Goureau O, Guillonneau X, Reichman S (2021) Reproducing diabetic retinopathy features using newly developed human induced-pluripotent stem cell-derived retinal Müller glial cells. Glia 69:1679–1693

    Article  CAS  Google Scholar 

  • Cunha-Vaz J, Bernardes R, Lobo C (2011) Blood-retinal barrier. Eur J Ophthalmol 21(Suppl 6):S3-9

    Article  Google Scholar 

  • Das A, Stroud S, Mehta A, Rangasamy S (2015) New treatments for diabetic retinopathy. Diabetes Obes Metab 17:219–230

    Article  CAS  Google Scholar 

  • Dudakov JA, Hanash AM, van den Brink MR (2015) Interleukin-22: immunobiology and pathology. Annu Rev Immunol 33:747–785

    Article  CAS  Google Scholar 

  • Eyerich K, Dimartino V, Cavani A (2017) IL-17 and IL-22 in immunity: driving protection and pathology. Eur J Immunol 47:607–614

    Article  CAS  Google Scholar 

  • Eynard AR, Repossi G (2019) Role of ω3 polyunsaturated fatty acids in diabetic retinopathy: a morphological and metabolically cross talk among blood retina barriers damage, autoimmunity and chronic inflammation. Lipids Health Dis 18:114

    Article  Google Scholar 

  • Feng S, Yu H, Yu Y, Geng Y, Li D, Yang C, Lv Q, Lu L, Liu T, Li G, Yuan L (2018) Levels of inflammatory cytokines IL-1β, IL-6, IL-8, IL-17A, and TNF-α in aqueous humour of patients with diabetic retinopathy. J Diabetes Res 2018:8546423

    Article  Google Scholar 

  • Forrester JV, Kuffova L, Delibegovic M (2020) The role of inflammation in diabetic retinopathy. Front Immunol 11:583687

    Article  CAS  Google Scholar 

  • Fresta CG, Fidilio A, Caruso G, Caraci F, Giblin FJ, Leggio GM, Salomone S, Drago F, Bucolo C (2020) A new human blood-retinal barrier model based on endothelial cells, pericytes, and astrocytes. Int J Mol Sci 21

  • Fukaya T, Fukui T, Uto T, Takagi H, Nasu J, Miyanaga N, Arimura K, Nakamura T, Koseki H, Choijookhuu N, Hishikawa Y, Sato K (2018) Pivotal role of IL-22 binding protein in the epithelial autoregulation of interleukin-22 signaling in the control of skin inflammation. Front Immunol 9:1418

    Article  Google Scholar 

  • Guidry C, King JL, Mason JO 3rd (2009) Fibrocontractive Müller cell phenotypes in proliferative diabetic retinopathy. Invest Ophthalmol vis Sci 50:1929–1939

    Article  Google Scholar 

  • Hossein-Khannazer N, Zian Z, Bakkach J, Kamali AN, Hosseinzadeh R, Anka AU, Yazdani R, Azizi G (2021) Features and roles of T helper 22 cells in immunological diseases and malignancies. Scand J Immunol 93:e13030

    Article  Google Scholar 

  • Huang JC, Schleisman M, Choi D, Mitchell C, Watson L, Asquith M, Rosenbaum JT (2021) Preliminary report on interleukin-22, GM-CSF, and IL-17F in the pathogenesis of acute anterior uveitis. Ocul Immunol Inflamm 29:558–565

    Article  CAS  Google Scholar 

  • Ito T, Hirose K, Nakajima H (2019) Bidirectional roles of IL-22 in the pathogenesis of allergic airway inflammation. Allergol Int 68:4–8

    Article  CAS  Google Scholar 

  • Jadhav AS, Patil PB, Biradar S (2020) Analysis on diagnosing diabetic retinopathy by segmenting blood vessels, optic disc and retinal abnormalities. J Med Eng Technol 44:299–316

    Article  Google Scholar 

  • Jensen IJ, Jensen SN, Sjaastad FV, Gibson-Corley KN, Dileepan T, Griffith TS, Mangalam AK, Badovinac VP (2020) Sepsis impedes EAE disease development and diminishes autoantigen-specific naive CD4 T cells. Elife 9

  • Jia L, Wu C (2014) The biology and functions of Th22 cells. Adv Exp Med Biol 841:209–230

    Article  CAS  Google Scholar 

  • Jiang Q, Yang G, Xiao F, Xie J, Wang S, Lu L, Cui D (2021) Role of Th22 cells in the pathogenesis of autoimmune diseases. Front Immunol 12:688066

    Article  CAS  Google Scholar 

  • Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A, Cayrol R, Bernard M, Giuliani F, Arbour N, Becher B, Prat A (2007) Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat Med 13:1173–1175

    Article  CAS  Google Scholar 

  • Keir M, Yi Y, Lu T, Ghilardi N (2020) The role of IL-22 in intestinal health and disease. J Exp Med 217:e20192195

    Article  Google Scholar 

  • Khalfaoui T, Lizard G, Ouertani-Meddeb A (2008) Adhesion molecules (ICAM-1 and VCAM-1) and diabetic retinopathy in type 2 diabetes. J Mol Histol 39:243–249

    Article  CAS  Google Scholar 

  • Khaloo P, Qahremani R, Rabizadeh S, Omidi M, Rajab A, Heidari F, Farahmand G, Bitaraf M, Mirmiranpour H, Esteghamati A, Nakhjavani M (2020) Nitric oxide and TNF-α are correlates of diabetic retinopathy independent of hs-CRP and HbA1c. Endocrine 69:536–541

    Article  CAS  Google Scholar 

  • Khanh Vu TH, Chen H, Pan L, Cho KS, Doesburg D, Thee EF, Wu N, Arlotti E, Jager MJ, Chen DF (2020) CD4(+) T-cell responses mediate progressive neurodegeneration in experimental ischemic retinopathy. Am J Pathol 190:1723–1734

    Article  CAS  Google Scholar 

  • Kim CJ, Nazli A, Rojas OL, Chege D, Alidina Z, Huibner S, Mujib S, Benko E, Kovacs C, Shin LY, Grin A, Kandel G, Loutfy M, Ostrowski M, Gommerman JL, Kaushic C, Kaul R (2012) A role for mucosal IL-22 production and Th22 cells in HIV-associated mucosal immunopathogenesis. Mucosal Immunol 5:670–680

    Article  CAS  Google Scholar 

  • Kinuthia UM, Wolf A, Langmann T (2020) Microglia and inflammatory responses in diabetic retinopathy. Front Immunol 11:564077

    Article  CAS  Google Scholar 

  • Kusuhara S, Fukushima Y, Ogura S, Inoue N, Uemura A (2018) Pathophysiology of diabetic retinopathy: the old and the new. Diabetes Metab J 42:364–376

    Article  Google Scholar 

  • Lee D, Jo H, Go C, Jang Y, Chu N, Bae S, Kang D, Kim Y, Kang JS (2022) The roles of IL-22 and its receptor in the regulation of inflammatory responses in the brain. Int J Mol Sci 23

  • Li D, Zhou J, Yang B, Yu Y (2019) microRNA-340-5p inhibits hypoxia/reoxygenation-induced apoptosis and oxidative stress in cardiomyocytes by regulating the Act1/NF-κB pathway. J Cell Biochem 120:14618–14627

    Article  CAS  Google Scholar 

  • Li J, Tomkinson KN, Tan XY, Wu P, Yan G, Spaulding V, Deng B, Annis-Freeman B, Heveron K, Zollner R, De Zutter G, Wright JF, Crawford TK, Liu W, Jacobs KA, Wolfman NM, Ling V, Pittman DD, Veldman GM, Fouser LA (2004) Temporal associations between interleukin 22 and the extracellular domains of IL-22R and IL-10R2. Int Immunopharmacol 4:693–708

    Article  CAS  Google Scholar 

  • Li J, Yu S, Lu X, Cui K, Tang X, Xu Y, Liang X (2021) The phase changes of M1/M2 phenotype of microglia/macrophage following oxygen-induced retinopathy in mice. Inflamm Res 70:183–192

    Article  CAS  Google Scholar 

  • Liu Y, Yang Z, Lai P, Huang Z, Sun X, Zhou T, He C, Liu X (2020) Bcl-6-directed follicular helper T cells promote vascular inflammatory injury in diabetic retinopathy. Theranostics 10:4250–4264

    Article  CAS  Google Scholar 

  • Luo Y, Dong X, Lu S, Gao Y, Sun G, Sun X (2021) Gypenoside XVII alleviates early diabetic retinopathy by regulating Müller cell apoptosis and autophagy in db/db mice. Eur J Pharmacol 895:173893

    Article  CAS  Google Scholar 

  • Mattapallil MJ, Kielczewski JL, Zárate-Bladés CR, St Leger AJ, Raychaudhuri K, Silver PB, Jittayasothorn Y, Chan CC, Caspi RR (2019) Interleukin 22 ameliorates neuropathology and protects from central nervous system autoimmunity. J Autoimmun 102:65–76

    Article  CAS  Google Scholar 

  • Mayer-Barber KD, Barber DL (2015) Innate and Adaptive cellular immune responses to mycobacterium tuberculosis infection. Cold Spring Harb Perspect Med 5

  • Mossner S, Kuchner M, Fazel Modares N, Knebel B, Al-Hasani H, Floss DM, Scheller J (2020) Synthetic interleukin 22 (IL-22) signaling reveals biological activity of homodimeric IL-10 receptor 2 and functional cross-talk with the IL-6 receptor gp130. J Biol Chem 295:12378–12397

    Article  CAS  Google Scholar 

  • Mühl H, Bachmann M (2019) IL-18/IL-18BP and IL-22/IL-22BP: two interrelated couples with therapeutic potential. Cell Signal 63:109388

    Article  Google Scholar 

  • Ouyang H, Du A, Zhou L, Zhang T, Lu B, Wang Z, Ji L (2022) Chlorogenic acid improves diabetic retinopathy by alleviating blood-retinal-barrier dysfunction via inducing Nrf2 activation. Phytother Res 36:1386–1401

    Article  CAS  Google Scholar 

  • Ouyang H, Mei X, Zhang T, Lu B, Ji L (2018) Ursodeoxycholic acid ameliorates diabetic retinopathy via reducing retinal inflammation and reversing the breakdown of blood-retinal barrier. Eur J Pharmacol 840:20–27

    Article  CAS  Google Scholar 

  • Pathak JL, Fang Y, Chen Y, Ye Z, Guo X, Yan Y, Zha J, Liang D, Ke X, Yang L, Zhong W, Wang L, Wang L (2021) Downregulation of macrophage-specific Act-1 intensifies periodontitis and alveolar bone loss possibly via TNF/NF-κB signaling. Front Cell Dev Biol 9:628139

    Article  Google Scholar 

  • Perez LG, Kempski J, McGee HM, Pelzcar P, Agalioti T, Giannou A, Konczalla L, Brockmann L, Wahib R, Xu H, Vesely MCA, Soukou S, Steglich B, Bedke T, Manthey C, Seiz O, Diercks BP, Gnafakis S, Guse AH, Perez D, Izbicki JR, Gagliani N, Flavell RA, Huber S (2020) TGF-β signaling in Th17 cells promotes IL-22 production and colitis-associated colon cancer. Nat Commun 11:2608

    Article  CAS  Google Scholar 

  • Qiu AW, Bian Z, Mao PA, Liu QH (2016) IL-17A exacerbates diabetic retinopathy by impairing Müller cell function via Act1 signaling. Exp Mol Med 48:e280

    Article  Google Scholar 

  • Qiu AW, Liu QH, Wang JL (2017) Blocking IL-17A alleviates diabetic retinopathy in rodents. Cell Physiol Biochem 41:960–972

    Article  CAS  Google Scholar 

  • Rezzola S, Guerra J, Krishna Chandran AM, Loda A, Cancarini A, Sacristani P, Semeraro F, Presta M (2021) VEGF-independent activation of müller cells by the vitreous from proliferative diabetic retinopathy patients. Int J Mol Sci 22

  • Rodgers JM, Zhou L, Miller SD (2010) Act1, scene brain: astrocytes play a lead role. Immunity 32:302–304

    Article  CAS  Google Scholar 

  • Rübsam A, Parikh S, Fort PE (2018) Role of inflammation in diabetic retinopathy. Int J Mol Sci 19

  • Ruterbusch M, Pruner KB, Shehata L, Pepper M (2020) In Vivo CD4(+) T Cell differentiation and function: revisiting the Th1/Th2 paradigm. Annu Rev Immunol 38:705–725

    Article  CAS  Google Scholar 

  • Ryba-Stanisławowska M, Werner P, Brandt A, Myśliwiec M, Myśliwska J (2016) Th9 and Th22 immune response in young patients with type 1 diabetes. Immunol Res 64:730–735

    Article  Google Scholar 

  • Saigusa R, Winkels H, Ley K (2020) T cell subsets and functions in atherosclerosis. Nat Rev Cardiol 17:387–401

    Article  CAS  Google Scholar 

  • Sheu A, Chan Y, Ferguson A, Bakhtyari MB, Hawke W, White C, Chan YF, Bertolino PJ, Woon HG, Palendira U, Sierro F, Lau SM (2018) A proinflammatory CD4(+) T cell phenotype in gestational diabetes mellitus. Diabetologia 61:1633–1643

    Article  CAS  Google Scholar 

  • Shi L, Ji Q, Liu L, Shi Y, Lu Z, Ye J, Zeng T, Xue Y, Yang Z, Liu Y, Lu J, Huang X, Qin Q, Li T, Lin YZ (2020) IL-22 produced by Th22 cells aggravates atherosclerosis development in ApoE(-/-) mice by enhancing DC-induced Th17 cell proliferation. J Cell Mol Med 24:3064–3078

    Article  CAS  Google Scholar 

  • Sonnenberg GF, Fouser LA, Artis D (2010) Functional biology of the IL-22-IL-22R pathway in regulating immunity and inflammation at barrier surfaces. Adv Immunol 107:1–29

    Article  CAS  Google Scholar 

  • Sugita S, Kawazoe Y, Imai A, Usui Y, Takahashi M, Mochizuki M (2013) Suppression of IL-22-producing T helper 22 cells by RPE cells via PD-L1/PD-1 interactions. Invest Ophthalmol vis Sci 54:6926–6933

    Article  CAS  Google Scholar 

  • Sun H, Zhong D, Wang C, Sun Y, Zhao J, Li G (2018) MiR-298 exacerbates ischemia/reperfusion injury following ischemic stroke by targeting Act1. Cell Physiol Biochem 48:528–539

    Article  CAS  Google Scholar 

  • Suzuki Y, Adachi K, Maeda N, Tanabu R, Kudo T, Nakazawa M (2020) Proliferative diabetic retinopathy without preoperative pan-retinal photocoagulation is associated with higher levels of intravitreal IL-6 and postoperative inflammation. Int J Retina Vitreous 6:24

    Article  Google Scholar 

  • Taguchi M, Someya H, Inada M, Nishio Y, Takayama K, Harimoto K, Karasawa Y, Ito M, Takeuchi M (2020) Retinal changes in mice spontaneously developing diabetes by Th17-cell deviation. Exp Eye Res 198:108155

    Article  CAS  Google Scholar 

  • Takeuchi M, Sato T, Sakurai Y, Taguchi M, Harimoto K, Karasawa Y, Ito M (2017) Association between aqueous humor and vitreous fluid levels of Th17 cell-related cytokines in patients with proliferative diabetic retinopathy. PLoS ONE 12:e0178230

    Article  Google Scholar 

  • Tang J, Kern TS (2011) Inflammation in diabetic retinopathy. Prog Retin Eye Res 30:343–358

    Article  CAS  Google Scholar 

  • Taurone S, Ralli M, Nebbioso M, Greco A, Artico M, Attanasio G, Gharbiya M, Plateroti AM, Zamai L, Micera A (2020) The role of inflammation in diabetic retinopathy: a review. Eur Rev Med Pharmacol Sci 24:10319–10329

    CAS  Google Scholar 

  • Ucgun NI, Zeki-Fikret C, Yildirim Z (2020) Inflammation and diabetic retinopathy. Mol vis 26:718–721

    CAS  Google Scholar 

  • Wang JJ, Zhu M, Le YZ (2015) Functions of Müller cell-derived vascular endothelial growth factor in diabetic retinopathy. World J Diabetes 6:726–733

    Article  Google Scholar 

  • Wang T, Zhang C, Xie H, Jiang M, Tian H, Lu L, Xu GT, Liu L, Zhang J (2021) Anti-VEGF therapy prevents Müller intracellular edema by decreasing VEGF-A in diabetic retinopathy. Eye vis (lond) 8:13

    Article  CAS  Google Scholar 

  • Wang Y, Liu X, Zhu L, Li W, Li Z, Lu X, Liu J, Hua W, Zhou Y, Gu Y, Zhu M (2020) PG545 alleviates diabetic retinopathy by promoting retinal Müller cell autophagy to inhibit the inflammatory response. Biochem Biophys Res Commun 531:452–458

    Article  CAS  Google Scholar 

  • Wei HX, Wang B, Li B (2020) IL-10 and IL-22 in mucosal immunity: driving protection and pathology. Front Immunol 11:1315

    Article  CAS  Google Scholar 

  • Whitehead M, Osborne A, Widdowson PS, Yu-Wai-Man P, Martin KR (2019) Angiopoietins in diabetic retinopathy: current understanding and therapeutic potential. J Diabetes Res 2019:5140521

    Article  Google Scholar 

  • Wu H, Wang M, Li X, Shao Y (2021) The metaflammatory and immunometabolic role of macrophages and microglia in diabetic retinopathy. Hum Cell 34:1617–1628

    Article  CAS  Google Scholar 

  • Xie H, Zhang C, Liu D, Yang Q, Tang L, Wang T, Tian H, Lu L, Xu JY, Gao F, Wang J, Jin C, Li W, Xu G, Xu GT, Zhang J (2021) Erythropoietin protects the inner blood-retinal barrier by inhibiting microglia phagocytosis via Src/Akt/cofilin signalling in experimental diabetic retinopathy. Diabetologia 64:211–225

    Article  CAS  Google Scholar 

  • Xu H, Cai M, Zhang X (2015) Effect of the blockade of the IL-23-Th17-IL-17A pathway on streptozotocin-induced diabetic retinopathy in rats. Graefes Arch Clin Exp Ophthalmol 253:1485–1492

    Article  CAS  Google Scholar 

  • Yang W, Chen X, Hu H (2020) CD4(+) T-cell differentiation in vitro. Methods Mol Biol 2111:91–99

    Article  CAS  Google Scholar 

  • Yao Y, Du J, Li R, Zhao L, Luo N, Zhai JY, Long L (2019a) Association between ICAM-1 level and diabetic retinopathy: a review and meta-analysis. Postgrad Med J 95:162–168

    Article  CAS  Google Scholar 

  • Yao Y, Li R, Du J, Long L, Li X, Luo N (2019b) Interleukin-6 and diabetic retinopathy: a systematic review and meta-analysis. Curr Eye Res 44:564–574

    Article  CAS  Google Scholar 

  • Ye Z, Zhao L, Gao Q, Jiang Y, Jiang Z, Chu CQ (2020) Analysis of IL-22 and Th22 cells by flow cytometry in systemic lupus erythematosus. Methods Mol Biol 2108:29–42

    Article  CAS  Google Scholar 

  • Yi C, Yi Y, Wei J, Jin Q, Li J, Sacitharan PK (2021) Targeting IL-22 and IL-22R protects against experimental osteoarthritis. Cell Mol Immunol 18:1329–1331

    Article  CAS  Google Scholar 

  • Zenewicz LA (2021) IL-22 Binding protein (IL-22BP) in the regulation of IL-22 biology. Front Immunol 12:766586

    Article  CAS  Google Scholar 

  • Zhang CJ, Wang C, Jiang M, Gu C, Xiao J, Chen X, Martin BN, Tang F, Yamamoto E, Xian Y, Wang H, Li F, Sartor RB, Smith H, Husni ME, Shi FD, Gao J, Carman J, Dongre A, McKarns SC, Coppieters K, Jørgensen TN, Leonard WJ, Li X (2018) Act1 is a negative regulator in T and B cells via direct inhibition of STAT3. Nat Commun 9:2745

    Article  Google Scholar 

  • Zhang T, Ouyang H, Mei X, Lu B, Yu Z, Chen K, Wang Z, Ji L (2019) Erianin alleviates diabetic retinopathy by reducing retinal inflammation initiated by microglial cells via inhibiting hyperglycemia-mediated ERK1/2-NF-κB signaling pathway. Faseb j 33:11776–11790

    Article  CAS  Google Scholar 

  • Zhang Y, Wang X, Mao L, Yang D, Gao W, Tian Z, Zhang M, Yang X, Ma K, Wu Y, Ni B (2017) Dual roles of IL-22 at ischemia-reperfusion injury and acute rejection stages of rat allograft liver transplantation. Oncotarget 8:115384–115397

    Article  Google Scholar 

  • Zhao R, Tang D, Yi S, Li W, Wu C, Lu Y, Hou X, Song J, Lin P, Chen L, Sun L (2014a) Elevated peripheral frequencies of Th22 cells: a novel potent participant in obesity and type 2 diabetes. PLoS ONE 9:e85770

    Article  Google Scholar 

  • Zhao RX, Li WJ, Lu YR, Qin J, Wu CL, Tian M, He TY, Yi SN, Tang DQ, Sun L, Chen L (2014b) Increased peripheral proinflammatory T helper subsets contribute to cardiovascular complications in diabetic patients. Mediators Inflamm 2014:596967

    Article  Google Scholar 

  • Zhou L, Chong MM, Littman DR (2009) Plasticity of CD4+ T cell lineage differentiation. Immunity 30:646–655

    Article  CAS  Google Scholar 

  • Zhu X, Zhu J (2020) CD4 T helper cell subsets and related human immunological disorders. Int J Mol Sci 21

  • Zuo ZF, Zhang Q, Liu XZ (2013) Protective effects of curcumin on retinal Müller cell in early diabetic rats. Int J Ophthalmol 6:422–424

    CAS  Google Scholar 

Download references

Funding

This study was supported by the China Postdoctoral Science Foundation (No. 2017M612870) and Natural Science Foundation of Liaoning Province (No. 2019-ZD-0807).

Author information

Authors and Affiliations

Authors

Contributions

YFW and HDY contributed to experiments, data collection, manuscript writing. JL, WQL and SXY provide help for experimental testing and theoretical support. LPZ, LP and XBW help collect experimental data. XZL and ZFZ contributed to experimental conception, data interpretation and manuscript revision. All authors have read and approved the submission and publication of the final version of manuscript. The authors vouch for the accuracy and completeness of the experiment.

Corresponding authors

Correspondence to Zhongfu Zuo or Xuezheng Liu.

Ethics declarations

Ethics approval and consent to participate

Ethics approval for all animal experiments was obtained from the institutional animal care and use Committee of Jinzhou Medical University [SYXK• [ Liao] •2019–0007].

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Yu, H., Li, J. et al. Th22 cells induce Müller cell activation via the Act1/TRAF6 pathway in diabetic retinopathy. Cell Tissue Res 390, 367–383 (2022). https://doi.org/10.1007/s00441-022-03689-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-022-03689-8

Keywords

Navigation