Skip to main content

Advertisement

Log in

MicroRNA-196a-5p overexpression in Wharton’s jelly umbilical cord stem cells promotes their osteogenic differentiation and new bone formation in bone defects in the rat calvarium

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The peri-tooth root alveolar loss often does not have sufficient space for repair material transplantation and plasticity. Mesenchymal stem cell (MSC) sheets have an advantage in providing more extracellular matrix (ECM) and may prove to be a new therapeutic consideration for this bone defect repair. The identification of key regulators that stimulate MSCs’ osteogenic potential and sheet-derived ECM deposition is the key to promoting its application. In this study, we found that inhibition or overexpression of miR-196a-5p led to a decline or enhancement, respectively, in the alkaline phosphatase (ALP) activity, mineralization, and the levels of osteogenic markers, Osteocalcin (OCN), Dentin Matrix Protein 1 (DMP1), Bone Sialoprotein (BSP), and Dentin Sialophosphoprotein (DSPP) of Wharton’s jelly of umbilical cord stem cells (WJCMSCs) in vitro. Moreover, the 5,6-Carboxyfluorescein Diacetate Succinimidyl Ester (CFSE) analysis revealed inhibition of the WJCMSCs’ proliferative ability upon miR-196a-5p overexpression. Characterization of the sheet formation by picrosirius red and Masson staining indicated that miR-196a-5p overexpression significantly promoted the collagen content in whole WJCMSC sheet–derived ECM. Furthermore, micro-CT and histopathology results indicated that the miR-196a-5p-overexpressed WJCMSC sheets significantly promoted new bone regeneration and rat calvarial bone defect closure 12 weeks following transplantation. The mRNA microarray analysis of miR-196a-5p-overexpressed WJCMSCs revealed 959 differentially expressed genes (DEGs) (34 upregulated and 925 downregulated). Moreover, 241 genes targeted by miR-196a-5p were predicted by using miRNA function websites of which only 19 predicted genes were consistent with the microarray revealed DEGs. Hence, one unrevealed downregulated DEG Serpin Family B Member 2 (SERPINB2) was investigated. And the deletion of SERPINB2 enhanced the ALP activity and mineralization of WJCMSCs in vitro. In conclusion, our study found that miR-196a-5p, as a key regulator, could repress the proliferation tendency, while stimulating osteogenic ability and WJCMSC sheet–derived ECM deposition, thus promoting new bone formation and rat calvarial bone defect closure. Furthermore, SERPINB2 is a key downstream gene involved in the miR-196a-5p-promoted WJCMSC osteogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ADSCs:

Adipose-derived stem cells

ALP:

Alkaline phosphatase

BMSCs:

Bone marrow mesenchymal stem cells

BSP:

Bone Sialoprotein

CFSE:

5,6-Carboxyfluorescein Diacetate Succinimidyl Ester

CLDN11:

Claudin

DAPI:

4′,6‐Diamidino‐2‐phenylindole dihydrochloride

DEGs:

Differentially expressed genes

DPSCs:

Dental pulp stem cells

DSPP:

Dentin Sialophosphoprotein

DMP1:

Dentin Matrix Protein 1

ECM:

Extracellular matrix

ENPP1:

Ectonucleotide pyrophosphatase phosphodiesterase 1

EVs:

Extracellular vesicles

GNAS:

GNAS Complex Locus

H&E:

Hematoxylin-eosin

HOXC8 :

homeobox C8

IL6 :

interleukin 6

micro-CT:

micro-computed tomography

MiRNA:

microRNA

miR‐196a-5p:

microRNA-196a-5p

MSCs:

mesenchymal stem cells

OCN:

Osteocalcin

RT-PCR:

Reverse transcriptase polymerase chain reaction

SD:

Sprague Dawley

SERPINB2 :

Serpin Family B Member 2

VCAM1 :

Vascular cell adhesion molecule 1

WJCMSCs:

Wharton’s jelly of umbilical cord stem cells

References

  • Aghebati-Maleki L, Dolati S, Zandi R et al (2019) Prospect of mesenchymal stem cells in therapy of osteoporosis: a review. J Cell Physiol 234(6):8570–8578

    Article  CAS  PubMed  Google Scholar 

  • Andrés-Sastre E, Nossin Y, Jansen I et al (2021) A new semi-orthotopic bone defect model for cell and biomaterial testing in regenerative medicine. Biomaterials 279:121187

    Article  PubMed  Google Scholar 

  • Bakhshandeh B, Zarrintaj P, Oftadeh MO et al (2017) Tissue engineering; strategies, tissues, and biomaterials. Biotechnol Genet Eng Rev 33(2):144–172

    Article  CAS  PubMed  Google Scholar 

  • Cabrera-Pérez R, Monguió-Tortajada M, Gámez-Valero A et al (2019) Osteogenic commitment of Wharton’s jelly mesenchymal stromal cells: mechanisms and implications for bioprocess development and clinical application. Stem Cell Res Ther 10(1):356

    Article  PubMed  PubMed Central  Google Scholar 

  • Cao Y, Shi R, Yang H et al (2020) Epiregulin promotes osteogenic differentiation and inhibits neurogenic trans-differentiation of adipose-derived mesenchymal stem cells via MAPKs pathway. Cell Biol Int 44(4):1046–1058

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Xu Y, Zhang T et al (2019) Mesenchymal stem cell sheets: a new cell-based strategy for bone repair and regeneration. Biotechnol Lett 41(3):305–318

    Article  CAS  PubMed  Google Scholar 

  • Daley GQ, Scadden DT (2008) Prospects for stem cell-based therapy. Cell 132(4):544–548

    Article  CAS  PubMed  Google Scholar 

  • Davies JE, Walker JT, Keating A (2017) Concise review: Wharton’s jelly: the rich, but enigmatic, source of mesenchymal stromal cells. Stem Cells Transl Med 6(7):1620–1630

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding DC, Chang YH, Shyu WC et al (2015) Human umbilical cord mesenchymal stem cells: a new era for stem cell therapy. Cell Transplant 24(3):339–347

    Article  PubMed  Google Scholar 

  • El-Badawy A, El-Badri N (2016) Clinical efficacy of stem cell therapy for diabetes mellitus: a meta-analysis. PLoS ONE 11(4):e0151938

    Article  PubMed  PubMed Central  Google Scholar 

  • Elsafadi M, Manikandan M, Atteya M et al (2017) SERPINB2 is a novel TGFβ-responsive lineage fate determinant of human bone marrow stromal cells. Sci Rep 7(1):10797

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan Z, Yamaza T, Lee J et al (2009) BCOR regulates mesenchymal stem cell function by epigenetic mechanisms. Nat Cell Biol 11(8):1002–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujii Y, Kawase-Koga Y, Hojo H et al (2018) Bone regeneration by human dental pulp stem cells using a helioxanthin derivative and cell-sheets technology. Stem Cell Res Ther 9(1):24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaihre B, Uswatta S, Jayasuriya AC (2017) Reconstruction of craniomaxillofacial bone defects using tissue-engineering strategies with injectable and non-injectable scaffolds. J Funct Biomater 8(4):49

    Article  PubMed Central  Google Scholar 

  • Han X, Yang H, Liu H et al (2021) miR-196b-5p inhibits proliferation of Wharton’s jelly umbilical cord stem cells. FEBS Open Bio 11(1):278–288

    Article  CAS  PubMed  Google Scholar 

  • Harris NLE, Vennin C, Conway JRW et al (2017) SerpinB2 regulates stromal remodelling and local invasion in pancreatic cancer. Oncogene 36(30):4288–4298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu L, Zhao B, Gao Z et al (2020) Regeneration characteristics of different dental derived stem cell sheets. J Oral Rehabil 47(1):66–72

    Article  CAS  PubMed  Google Scholar 

  • Jamalpoor Z, Soleimani M, Taromi N et al (2019) Comparative evaluation of morphology and osteogenic behavior of human Wharton’s jelly mesenchymal stem cells on 2D culture plate and 3D biomimetic scaffold. J Cell Physiol 234(12):23123–23134

    Article  CAS  PubMed  Google Scholar 

  • Kim YJ, Bae SW, Yu SS et al (2009) miR-196a regulates proliferation and osteogenic differentiation in mesenchymal stem cells derived from human adipose tissue. J Bone Miner Res 24(5):816–825

    Article  CAS  PubMed  Google Scholar 

  • La Rocca G, Lo Iacono M, Corsello T et al (2013) Human Wharton’s jelly mesenchymal stem cells maintain the expression of key immunomodulatory molecules when subjected to osteogenic, adipogenic and chondrogenic differentiation in vitro: new perspectives for cellular therapy. Curr Stem Cell Res Ther 8:100–113

    Article  PubMed  Google Scholar 

  • Lee JA, Yerbury JJ, Farrawell N et al (2015) SerpinB2 (PAI-2) modulates proteostasis via binding misfolded proteins and promotion of cytoprotective inclusion formation. PLoS ONE 10(6):e0130136

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee YC, Chan YH, Hsieh SC et al (2019) Comparing the osteogenic potentials and bone regeneration capacities of bone marrow and dental pulp mesenchymal stem cells in a rabbit calvarial bone defect model. Int J Mol Sci 20(20):5015

    Article  CAS  PubMed Central  Google Scholar 

  • Lin X, Patil S, Gao YG et al (2020) The bone extracellular matrix in bone formation and regeneration. Front Pharmacol 11:757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Han X, Yang H et al (2020) GREM1 inhibits osteogenic differentiation, senescence and BMP transcription of adipose-derived stem cells. Connect Tissue Res 1–12

  • Liu Y, Fang J, Zhang Q et al (2020) Wnt10b-overexpressing umbilical cord mesenchymal stem cells promote critical size rat calvarial defect healing by enhanced osteogenesis and VEGF-mediated angiogenesis. J Orthop Translat 23:29–37

    Article  PubMed  PubMed Central  Google Scholar 

  • Monguió-Tortajada M, Roura S, Gálvez-Montón C et al (2017) Mesenchymal stem cells induce expression of CD73 in human monocytes in vitro and in a swine model of myocardial infarction in vivo. Front Immunol 8:1577

    Article  PubMed  PubMed Central  Google Scholar 

  • Nanci A, Bosshardt DD (2000) Structure of periodontal tissues in health and disease. Periodontol 2006(40):11–28

    Google Scholar 

  • Nawa K, Ikeno H, Matsuhashi N et al (2013) Discovering small molecules that inhibit adipogenesis and promote osteoblastogenesis: unique screening and Oncostatin M-like activity. Differentiation 86(1–2):65–74

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen HH, van Damme J, Puype M et al (1992) Microsequences of 145 proteins recorded in the two-dimensional gel protein database of normal human epidermal keratinocytes. Electrophoresis 13(12):960–969

    Article  CAS  PubMed  Google Scholar 

  • Schindeler A, Mills RJ, Bobyn JD et al (2018) Preclinical models for orthopedic research and bone tissue engineering. J Orthop Res 36(3):832–840

    PubMed  Google Scholar 

  • Smith BT, Shum J, Wong M et al (2015) Bone tissue engineering challenges in oral & maxillofacial surgery. Adv Exp Med Biol 881:57–78

    Article  CAS  PubMed  Google Scholar 

  • Socorro M, Shinde A, Yamazaki H et al (2020) Trps1 transcription factor represses phosphate-induced expression of SerpinB2 in osteogenic cells. Bone 141:115673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Styrkarsdottir U, Stefansson OA, Gunnarsdottir K et al (2019) GWAS of bone size yields twelve loci that also affect height, BMD, osteoarthritis or fractures. Nat Commun 10(1):2054

    Article  PubMed  PubMed Central  Google Scholar 

  • Sybil D, Jain V, Mohanty S et al (2020) Oral stem cells in intraoral bone formation. J Oral Biosci 62(1):36–43

    Article  PubMed  Google Scholar 

  • Takafuji Y, Tatsumi K, Kawao N et al (2021) MicroRNA-196a-5p in extracellular vesicles secreted from myoblasts suppresses osteoclast-like cell formation in mouse cells. Calcif Tissue Int 108(3):364–376

    Article  CAS  PubMed  Google Scholar 

  • Ustriyana P, Schulte F, Gombedza F et al (2021) Spatial survey of non-collagenous proteins in mineralizing and non-mineralizing vertebrate tissues ex vivo. Bone Rep 14:100754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walmsley GG, Ransom RC, Zielins ER et al (2016) Stem cells in bone regeneration. Stem Cell Rev Rep 12(5):524–529

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Liu S, Li J et al (2019a) Roles for miRNAs in osteogenic differentiation of bone marrow mesenchymal stem cells. Stem Cell Res Ther 10(1):197

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L, Xu W, Chen Y et al (2019b) Alveolar bone repair of rhesus monkeys by using BMP-2 gene and mesenchymal stem cells loaded three-dimensional printed bioglass scaffold. Sci Rep 9(1):18175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Jia Z, Diao S et al (2016) IGFBP5 enhances osteogenic differentiation potential of periodontal ligament stem cells and Wharton’s jelly umbilical cord stem cells, via the JNK and MEK/Erk signalling pathways. Cell Prolif 49(5):618–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Han L, Sun T et al (2021) Osteogenic and angiogenic lineage differentiated adipose-derived stem cells for bone regeneration of calvarial defects in rabbits. J Biomed Mater Res A 109(4):538–550

    Article  CAS  PubMed  Google Scholar 

  • Wei F, Qu C, Song T et al (2012) Vitamin C treatment promotes mesenchymal stem cell sheets formation and tissue regeneration by elevating telomerase activity. J Cell Physiol 227(9):3216–3224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei F, Song T, Ding G et al (2013) Functional tooth restoration by allogeneic mesenchymal stem cell-based bio-root regeneration in swine. Stem Cells Dev 22(12):1752–1762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zajdel A, Kałucka M, Kokoszka-Mikołaj E et al (2017) Osteogenic differentiation of human mesenchymal stem cells from adipose tissue and Wharton’s jelly of the umbilical cord. Acta Biochim Pol 64(2):365–369

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Lv S, Liu X et al (2018) Umbilical cord mesenchymal stem cell treatment for Crohn’s disease: a randomized controlled clinical trial. Gut Liver 12(1):73–78

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Xie H, Li S (2020) LncRNA LOXL1-AS1 controls osteogenic and adipocytic differentiation of bone marrow mesenchymal stem cells in postmenopausal osteoporosis through regulating the miR-196a-5p/Hmga2 axis. J Bone Miner Metab 38(6):794–805

    Article  CAS  PubMed  Google Scholar 

  • Zhong LN, Zhang YZ, Li H et al (2019) Overexpressed miR-196a accelerates osteogenic differentiation in osteoporotic mice via GNAS-dependent Hedgehog signaling pathway. J Cell Biochem 120(12):19422–19431

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the General Program (Key Program, Major Research Plan) of the National Natural Science Foundation of China (81670948 to Y. C.).

Author information

Authors and Affiliations

Authors

Contributions

WY and ZS performed the experiments. WY analyzed the data. YH, YD, and ZY were responsible for collection of data and technical expertise. CY supplied experimental materials and resources. YH, CYY, and CY conceived the study. WY and CYY drafted the manuscript. CYY reviewed this work. All the authors approved the final manuscript. WY and ZS are senior authors, contributed equally, and are co-correspondents of CY to this work.

Corresponding author

Correspondence to Yu Cao.

Ethics declarations

Ethics approval

The animal study was approved by the animal care and use committee of Beijing Stomatological Hospital Animal laboratory (reference number: 81,670,948). The animal care and experimental procedure were performed following the guidelines of the Beijing Experimental Animal Management Ordinance. Human stem cell study complied with the ISSCR “guidelines for the Conduct of Human Embryonic Stem Cell Research.” Human WJCMSCs were obtained from ScienCell Research Laboratories (Carlsbad, CA, USA).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 90 KB)

Supplementary file2 (DOCX 2027 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, S., Yang, H. et al. MicroRNA-196a-5p overexpression in Wharton’s jelly umbilical cord stem cells promotes their osteogenic differentiation and new bone formation in bone defects in the rat calvarium. Cell Tissue Res 390, 245–260 (2022). https://doi.org/10.1007/s00441-022-03673-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-022-03673-2

Keywords

Navigation