Skip to main content
Log in

Sestrin2 attenuates renal damage by regulating Hippo pathway in diabetic nephropathy

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Glomerular mesangial cell proliferation and extracellular matrix accumulation contribute to the progression of diabetic nephropathy (DN). As a conserved stress-inducible protein, sestrin2 (Sesn2) plays critical role in the regulation of oxidative stress, inflammation, autophagy, metabolism, and endoplasmic reticulum stress. In this study, we investigated the role of Sesn2 on renal damage in diabetic kidney using transgenic mice overexpressing Sesn2 and the effect of Sesn2 on mesangial cell proliferation and extracellular matrix accumulation in diabetic conditions and the possible molecular mechanisms involved. Sesn2 overexpression improved renal function and decreased glomerular hypertrophy, albuminuria, mesangial expansion, extracellular matrix accumulation, and TGF-β1 expression, as well as oxidative stress in diabetic mice. In vitro experiments, using human mesangial cells (HMCs), revealed that Sesn2 overexpression inhibited high glucose (HG)-induced proliferation, fibronectin and collagen IV production, and ROS generation. Meanwhile, Sesn2 overexpression restored phosphorylation levels of Lats1 and YAP and inhibited TEAD1 expression. Inhibition of Lats1 accelerated HG-induced proliferation and expression of fibronectin and collagen IV. Verteporfin, an inhibitor of YAP, suppressed HG-induced proliferation and expression of fibronectin and collagen IV. However, Sesn2 overexpression reversed Lats1 deficiency-induced Lats1 and YAP phosphorylation, nuclear expression levels of YAP and TEAD1, and proliferation and fibronectin and collagen IV expressions in HMCs exposed to HG. In addition, antioxidant NAC or tempol treatment promoted phosphorylation of Lats1 and YAP and inhibited TEAD1 expression, proliferation, and fibronectin and collagen IV accumulation in HG-treated HMCs. Taken together, Sesn2 overexpression inhibited mesangial cell proliferation and fibrosis via regulating Hippo pathway in diabetic nephropathy. Induction of Sesn2 may be a potential therapeutic target in diabetic nephropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Abboud HE (2012) Mesangial cell biology. Exp Cell Res 318(9):979–985

    Article  CAS  PubMed  Google Scholar 

  • Budanov AV, Karin M (2008) p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 134(3):451–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Budanov AV, Shoshani T, Faerman A et al (2002) Identification of a novel stress-responsive gene Hi95 involved in regulation of cell viability. Oncogene 21(39):6017–6031

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Harris RC (2016) Interaction of the EGF receptor and the Hippo pathway in the diabetic kidney. J Am Soc Nephrol 27(6):1689–1700

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Wang X, He Q et al (2020a) YAP activation in renal proximal tubule cells drives diabetic renal interstitial fibrogenesis. Diabetes 69(11):2446–2457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen K, Yu B, Liao J (2021) LncRNA SOX2OT alleviates mesangial cell proliferation and fibrosis in diabetic nephropathy via Akt/mTOR-mediated autophagy. Mol Med 27(1):71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Gao H, Wang L et al (2020b) Farrerol alleviates high glucose-induced renal mesangial cell injury through the ROS/Nox4/ERK1/2 pathway. Chem Biol Interact 316:108921

    Article  CAS  PubMed  Google Scholar 

  • Cho Y, Park MJ, Kim K et al (2020) Reactive oxygen species-induced activation of Yes-associated protein-1 through the c-Myc pathway is a therapeutic target in hepatocellular carcinoma. World J Gastroenterol 26(42):6599–6613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins AJ, Foley RN, Chavers B et al (2014) US renal data system 2013 annual data report. Am J Kidney Dis 63(1 Suppl):A7

    Article  PubMed  Google Scholar 

  • Cui W, Min X, Xu X, Du B, Luo P (2017) Role of nuclear factor erythroid 2-related factor 2 in diabetic nephropathy. J Diabetes Res 2017:3797802

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong J, Feldmann G, Huang J et al (2007) Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130(6):1120–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong Z, Sun Y, Wei G et al (2019) Ergosterol ameliorates diabetic nephropathy by attenuating mesangial cell proliferation and extracellular matrix deposition via the TGF-β1/Smad2 signaling pathway. Nutrients 11(2):483

    Article  CAS  PubMed Central  Google Scholar 

  • Eid AA, Lee DY, Roman LJ, Khazim K, Gorin Y (2013) Sestrin 2 and AMPK connect hyperglycemia to Nox4-dependent endothelial nitric oxide synthase uncoupling and matrix protein expression. Mol Cell Biol 33(17):3439–3460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forbes JM, Coughlan MT, Cooper ME (2008) Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes 57(6):1446–1454

    Article  CAS  PubMed  Google Scholar 

  • Gorin Y, Block K (2013) Nox4 and diabetic nephropathy: with a friend like this, who needs enemies? Free Radic Biol Med 61:130–142

    Article  CAS  PubMed  Google Scholar 

  • Halder G, Johnson RL (2011) Hippo signaling: growth control and beyond. Development 138(1):9–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishihara M, Urushido M, Hamada K et al (2013) Sestrin-2 and BNIP3 regulate autophagy and mitophagy in renal tubular cells in acute kidney injury. Am J Physiol Renal Physiol 305(4):F495-509

    Article  CAS  PubMed  Google Scholar 

  • Ji F, Shen T, Zou W, Jiao J (2017) UCP2 regulates embryonic neurogenesis via ROS-mediated Yap alternation in the developing neocortex. Stem Cells 35(6):1479–1492

    Article  CAS  PubMed  Google Scholar 

  • Kai T, Tsukamoto Y, Hijiya N et al (2016) Kidney-specific knockout of Sav1 in the mouse promotes hyperproliferation of renal tubular epithelium through suppression of the Hippo pathway. J Pathol 239(1):97–108

    Article  CAS  PubMed  Google Scholar 

  • Kanwar YS, Sun L, Xie P, Liu FY, Chen S (2011) A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Annu Rev Pathol 6:395–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HJ, Joe Y, Kim SK et al (2017) Carbon monoxide protects against hepatic steatosis in mice by inducing sestrin-2 via the PERK-eIF2alpha-ATF4 pathway. Free Radic Biol Med 110:81–91

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Budanov AV, Karin M (2013) Sestrins orchestrate cellular metabolism to attenuate aging. Cell Metab 18(6):792–801

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Budanov AV, Talukdar S et al (2012) Maintenance of metabolic homeostasis by Sestrin2 and Sestrin3. Cell Metab 16(3):311–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JS, Park HW, Cho KJ et al (2020) Sestrin2 inhibits YAP activation and negatively regulates corneal epithelial cell proliferation. Exp Mol Med 52(6):951–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei D, Chengcheng L, Xuan Q et al (2019) Quercetin inhibited mesangial cell proliferation of early diabetic nephropathy through the Hippo pathway. Pharmacol Res 146:104320

    Article  CAS  PubMed  Google Scholar 

  • Leung JY, Wilson HL, Voltzke KJ et al (2017) Sav1 loss induces senescence and Stat3 activation coinciding with tubulointerstitial fibrosis. Mol Cell Biol37(12)

  • Lin CL, Wang JY, Ko JY et al (2010) Dickkopf-1 promotes hyperglycemia-induced accumulation of mesangial matrix and renal dysfunction. J Am Soc Nephrol 21(1):124–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Q, Ma Y, Chen Z et al (2020) Sestrin2 regulates podocyte mitochondrial dysfunction and apoptosis under high glucose conditions via AMPK. Int J Mol Med 45(5):1361–1372

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Li M, Du X, Huang Z, Quan N (2021) Sestrin 2, a potential star of antioxidant stress in cardiovascular diseases. Free Radic Biol Med 163:56–68

    Article  CAS  PubMed  Google Scholar 

  • Luo C, Zhao S, Zhang M et al (2018) SESN2 negatively regulates cell proliferation and casein synthesis by inhibition the amino acid-mediated mTORC1 pathway in cow mammary epithelial cells. Sci Rep 8(1):3912

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma S, Meng Z, Chen R, Guan KL (2019) The Hippo pathway: biology and pathophysiology. Annu Rev Biochem 88:577–604

    Article  CAS  PubMed  Google Scholar 

  • Pasha M, Eid AH, Eid AA, Gorin Y, Munusamy S (2017) Sestrin2 as a novel biomarker and therapeutic target for various diseases. Oxid Med Cell Longev 2017:3296294

    Article  PubMed  PubMed Central  Google Scholar 

  • Qian X, He L, Hao M et al (2021) YAP mediates the interaction between the Hippo and PI3K/Akt pathways in mesangial cell proliferation in diabetic nephropathy. Acta Diabetol 58(1):47–62

    Article  CAS  PubMed  Google Scholar 

  • Ro SH, Nam M, Jang I et al (2014) Sestrin2 inhibits uncoupling protein 1 expression through suppressing reactive oxygen species. Proc Natl Acad Sci U S A 111(21):7849–7854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schena FP, Gesualdo L (2005) Pathogenetic mechanisms of diabetic nephropathy. J Am Soc Nephrol Suppl 1:S30–33

  • Singh DK, Winocour P, Farrington K (2011) Oxidative stress in early diabetic nephropathy: fueling the fire. Nat Rev Endocrinol 7(3):176–184

    Article  CAS  PubMed  Google Scholar 

  • Tinajero MG, Malik VS (2021) An update on the epidemiology of type 2 diabetes: a global perspective. Endocrinol Metab Clin North Am 50(3):337–355

    Article  PubMed  Google Scholar 

  • Umanath K, Lewis JB (2018) Update on diabetic nephropathy: core curriculum 2018. Am J Kidney Dis 71(6):884–895

    Article  PubMed  Google Scholar 

  • Wang S, Wen X, Han XR et al (2018) Repression of microRNA-382 inhibits glomerular mesangial cell proliferation and extracellular matrix accumulation via FoxO1 in mice with diabetic nephropathy. Cell Prolif 51(5):e12462

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolf G, Ziyadeh FN (1999) Molecular mechanisms of diabetic renal hypertrophy. Kidney Int 56(2):393–405

    Article  CAS  PubMed  Google Scholar 

  • Young BA, Johnson RJ, Alpers CE et al (1995) Cellular events in the evolution of experimental diabetic nephropathy. Kidney Int 47(3):935–944

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Pang S, Deng B et al (2012) High glucose induces renal mesangial cell proliferation and fibronectin expression through JNK/NF-kappaB/NADPH oxidase/ROS pathway, which is inhibited by resveratrol. Int J Biochem Cell Biol 44(4):629–638

    Article  CAS  PubMed  Google Scholar 

  • Zhao B, Ye X, Yu J et al (2008) TEAD mediates YAP-dependent gene induction and growth control. Genes Dev 22(14):1962–1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao HJ, Wang S, Cheng H et al (2006) Endothelial nitric oxide synthase deficiency produces accelerated nephropathy in diabetic mice. J Am Soc Nephrol 17(10):2664–2669

    Article  CAS  PubMed  Google Scholar 

  • Zheng H, Whitman SA, Wu W et al (2011) Therapeutic potential of Nrf2 activators in streptozotocin-induced diabetic nephropathy. Diabetes 60(11):3055–3066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (No. 81470966), the Funds for Guiding Local Scientific and Technological Development by the Central Government of China (216Z7703G), and the Natural Science Foundation of Hebei Province (No. H2021206144; H2021206356).

Author information

Authors and Affiliations

Authors

Contributions

Yawei Bian, Shan Song, and Yonghong Shi contributed to the conception and design of the study. Yawei Bian, Chonglin Shi, Ming Wu, Jiajia Dong, and Xuan Dong were responsible for the execution of the cell experiments. Shan Song, Duojun Qiu, and Dongyun Wang were responsible for the animal experiments. Lin Mu, Wei Zhang, Zihui Zhou, and Chen Yuan were responsible in the assistance of the completion of animal experiments. Yawei Bian and Yonghong Shi were responsible for writing and editing the manuscript.

Corresponding author

Correspondence to Yonghong Shi.

Ethics declarations

Ethics approval

All experimental animal procedures were reviewed and approved by Ethics Review Committee for Animal Experimentation of Hebei Medical University (No. IACUC-Hebmu-2021030). Clinical specimens were approved by Hebei Medical University ethical committees (No. 20190015).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, Y., Shi, C., Song, S. et al. Sestrin2 attenuates renal damage by regulating Hippo pathway in diabetic nephropathy. Cell Tissue Res 390, 93–112 (2022). https://doi.org/10.1007/s00441-022-03668-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-022-03668-z

Keywords

Navigation