Skip to main content
Log in

Epigenetics as “conductor” in “orchestra” of pluripotent states

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Pluripotent character is described as the potency of cells to differentiate into all three germ layers. The best example to reinstate the term lies in the context of embryonic stem cells (ESCs). Pluripotent ESC describes the in vitro status of those cells that originate during the complex process of embryogenesis. Pre-implantation to post-implantation development of embryo embrace cells with different levels of stemness. Currently, four states of pluripotency have been recognized, in the progressing order of “naïve,” “poised,” “formative,” and “primed.” Epigenetics act as the “conductor” in this “orchestra” of transition in pluripotent states. With a distinguishable gene expression profile, these four states associate with different epigenetic signatures, sometimes distinct while otherwise overlapping. The present review focuses on how epigenetic factors, including DNA methylation, bivalent chromatin, chromatin remodelers, chromatin/nuclear architecture, and microRNA, could dictate pluripotent states and their transition among themselves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

3D:

3-Dimension

5hmC:

5-Hydroxy methylcytosine

5mC:

5-Methylcytosine

ABCG2:

ATP-binding cassette subfamily G member 2

AK028326:

Retinal non-coding, RNA 2 (RNCR2), Gomafu, Miat

AK141205:

Cis-antisense to C18ORF22 homolog

BAF:

BRG1-associated factor complex

BRG1:

Brahma-related gene-1

BRM:

Brahma

CAPS2:

Calcyphosine 2

Cc:

Coiled coil

CCDC144NL-AS1:

Coiled-coil domain containing 144 family, N-terminal like antisense RNA 1

CHD:

Chromodomain helicase DNA-binding

ChEP:

Chromain enrichment for proteomics

ChIP-seq:

Chromatin immunoprecipitation-sequencing

CLDN4:

Claudin 4

CTCF:

CCCTC-binding factor

DGCR8:

DiGeorge syndrome critical region gene 8

DIDO1:

Death inducer-obliterator 1

DNMT:

DNA methyltransferase

DPPA3:

Developmental pluripotency-associated 3

DROSHA:

Double-stranded RNA-specific endoribonuclease

DUSP27:

Dual-specificity phosphatase 27

dUTP:

Deoxyuridine triphosphate

EED:

Embryonic ectoderm development

ELRI:

Extremely long-range promoter-promoter interactions

EpiLC:

Epiblast-like stem cell

EpiSC:

Epiblast stem cell

Eprn:

Ephemeron

ERK/MEK:

Extracellular signal-regulated kinases/mitogen-activated protein kinase

eRNA:

Enhancer RNA

ERP27:

Endoplasmic reticulum protein 27

ESC:

Embryonic stem cell

ESRRB:

Estrogen-related receptor beta

EZH1:

Enhancer of zeste homolog 2

FGF5:

Fibroblast growth factor 5

GATAD2/3:

GATA zinc finger domain-containing protein 2/3

GBX2:

Gastrulation brain homeobox 2

GLTSCR1:

Glioma tumor suppressor candidate region gene 1

GO:

Gene ontology

GRHL2:

Grainyhead-like 2

GSK3:

Glycogen synthase kinase

HERV-H/K:

Human endogenous retrovirus-H/K

HNRNPK:

Heterogeneous nuclear ribonucleoprotein K

HIRA:

Histone cell cycle regulator

HPAT2/3/5:

Human pluripotency-associated transcripts 2/3/5

ICM:

Inner cell mass

INO80:

INO80 complex ATPase subunit

ISWI:

Chromatin remodelling complex ATPase chain Isw1

ISY1:

ISY1 splicing factor homolog

JARID2:

Jumonji and AT-rich interaction domain-containing 2

JMJD2C:

Jumonji domain 2C

KLF:

Kruppel-like factor

LEF1:

Lymphoid enhancer-binding factor 1

LincRNA:

Long intergenic ncRNAs

Lncenc1:

Long non-coding RNA, embryonic stem cells expressed 1

LncRNA:

Long non-coding RNA

MLL:

Myeloid/lymphoid leukemia

Mta:

Metastatic-associated protein

MTF2:

Metal response element-binding transcription factor 2

NANOG:

Nanog homeobox

NL:

Nuclear lamina

NURD:

Nuclear remodelling and deacetylase

OCT4:

Octamer-binding transcription factor 4

OCT6:

POU class 3 homeobox 1

OTX2:

Orthodenticle homeobox 2

PcG:

Polycomb group

PGC:

Primordial germ cell

PRC:

Polycomb repressive complex

PRDM14:

PR/SET domain 14

RbAP:

Retinoblastoma-associated-binding protein

REG2:

Regenerating islet-derived 2

REX1:

ZFP42 zinc finger protein

RRBS:

Reduced representative bisulfide sequencing

SETD1A/SETD1B:

SET domain-containing 1A/1B

SETD1B:

SET domain-containing 1B

SMARCAD1:

SWI/SNF-related, matrix-associated actin-dependent regulator of chromatin, subfamily A, containing DEAD/H box 1

SOX2:

SRY (sex-determining region Y)-box 2

STAT3:

Signal transducer and activator of transcription 3

Suz12:

Suppressor of zeste 12 protein homolog

SWI/SNF:

SWItch/sucrose non-fermentable

TAD:

Topologically associated domain

TBX2:

T-box transcription factor 2

TET:

Ten-eleven translocation

Trincr1:

TRIM71 interacting long non-coding RNA 1

TrxG:

Trithorax group

TRE:

Transregulatory element

TSS:

Transcriptional start site

ULI-NChIP:

Ultra-low-input micrococcal nuclease-based native ChIP

UTR:

Untranslated region

VE:

Vascular endothelium

VGLL1:

Vestigial-like family member 1

WDR5:

WD repeat-containing protein 5

ZFHX2:

Zinc finger homeobox 2

Zfp281:

Zinc finger protein 281

ZIC2:

Zinc finger protein ZIC 2

References

  • Apostolou E, Hochedlinger K (2013) Chromatin dynamics during cellular reprogramming. Nature 502:462–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atkinson SR, Marguerat S, Bähler J (2012) Exploring long non-coding RNAs through sequencing. Semin Cell Dev Biol 23:200–205

    Article  CAS  PubMed  Google Scholar 

  • Auclair G, Guibert S, Bender A, Weber M (2014) Ontogeny of CpG island methylation and specificity of DNMT3 methyltransferases during embryonic development in the mouse. Genome Biol 15:545

    Article  PubMed  PubMed Central  Google Scholar 

  • Baker D, Barbaric I (2022) Characterizing the genetic stability of human naïve and primed pluripotent stem cells. Methods Mol Biol 2416:267–284

    Article  PubMed  Google Scholar 

  • Bar S, Schachter M, Eldar-Geva T, Benvenisty N (2017) Large-scale analysis of loss of imprinting in human pluripotent stem cells. Cell Rep 19:957–968

    Article  CAS  PubMed  Google Scholar 

  • Bates LE, Silva JC (2017) Reprogramming human cells to naïve pluripotency: how close are we? Current Opinion Genet Dev 46:58–65

    Article  CAS  Google Scholar 

  • Battle SL, Jayavelu ND, Azad RN, Hesson J, Ahmed FN, Overbey EG, Zoller JA, Mathieu J, Ruohola-Baker H, Ware CB, Hawkins RD (2019) Enhancer chromatin and 3d genome architecture changes from naive to primed human embryonic stem cell states. Stem Cell Rep 12:1129–1144

    Article  CAS  Google Scholar 

  • Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326

    Article  CAS  PubMed  Google Scholar 

  • Bertero A, Brown S, Madrigal P, Osnato A, Ortmann D, Yiangou L, Kadiwala J, Hubner NC, de Los Mozos IR, Sadée C, Lenaerts AS, Nakanoh S, Grandy R, Farnell E, Ule J, Stunnenberg HG, Mendjan S, Vallier L (2018) The SMAD2/3 interactome reveals that TGFβ controls m6A mRNA methylation in pluripotency. Nature 555:256–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattarai DP, Aguilo F (2022) m6A RNA immunoprecipitation followed by high-throughput sequencing to map N6-methyladenosine. Methods Mol Biol 2404:355–362

    Article  PubMed  Google Scholar 

  • Boveri T (1892) Sitzungsber. d. Gesellschaft F Morphologie Und Physiologie 8:114–225

    Google Scholar 

  • Bredenkamp N, Yang J, Clarke J, Stirparo GG, von Meyenn F, Dietmann S, Baker D, Drummond R, Ren Y, Li D, Wu C, Rostovskaya M, Eminli-Meissner S, Smith A, Guo G (2019) Wnt inhibition facilitates RNA-mediated reprogramming of human somatic cells to naive pluripotency. Stem Cell Reports 13:1083–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broadbent KM, Broadbent JC, Ribacke U, Wirth D, Rinn JL, Sabeti PC (2015) Strand-specific RNA sequencing in Plasmodium falciparum malaria identifies developmentally regulated long non-coding RNA and circular RNA. BMC Genomics 16:454

    Article  PubMed  PubMed Central  Google Scholar 

  • Brons IGM, Smithers LE, Trotter MW, Rugg-Gunn P, Sun B, de Sousa Lopes SMC, de Sousa C, Lopes SM, Howlett SK, Clarkson A, Ahrlund-Richter L, Pedersen RA, Vallier L (2007) Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448:191–195

    Article  CAS  PubMed  Google Scholar 

  • Bultman SJ, Gebuhr TC, Pan H, Svoboda P, Schultz RM, MagnusonT, (2006) Maternal BRG1 regulates zygotic genome activation in the mouse. Genes Dev 20:1744–1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canovas S, Ross PJ, Kelsey G, Coy P (2017) DNA methylation in embryo development: epigenetic impact of ART (assisted reproductive technologies). BioEssays 39:10

    Article  Google Scholar 

  • Cao K, Collings CK, Morgan MA, Marshall SA, Rendleman EJ, Ozark PA, Smith ER, Shilatifard A (2018) An Mll4/COMPASS-Lsd1 epigenetic axis governs enhancer function and pluripotency transition in embryonic stem cells. Sci Adv 4:eaap8747

  • Chang TC, Zeitels LR, Hwang HW, Chivukula RR, Wentzel EA, Dews M, Jung J, Gao P, Dang CV, Beer MA, Thomas-Tikhonenko A, Mendell JT (2009) Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation. Proc Natl Acad Sci U S A 106:3384–3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheloufi S, Elling U, Hopfgartner B, Jung YL, Murn J, Ninova M, Hubmann M, Badeaux AI, Euong Ang C, Tenen D, Wesche DJ, Abazova N, Hogue M, Tasdemir N, Brumbaugh J, Rathert P, Jude J, Ferrari F, Blanco A, Fellner M, Wenzel D, Zinner M, Vidal SE, Bell O, Stadtfeld M, Chang HY, Almouzni G, Lowe SW, Rinn J, Wernig M, Aravin A, Shi Y, Park PJ, Penninger JM, Zuber J, Hochedlinger K (2015) The histone chaperone CAF-1 safeguards somatic cell identity. Nature 528:218–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen AF, Liu AJ, Krishnakumar R, Freimer JW, DeVeale B, Blelloch R (2018) GRHL2-dependent enhancer switching maintains a pluripotent stem cell transcriptional subnetwork after exit from naïve pluripotency. Cell Stem Cell 23:226–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Zhao Q, Zhao YL, Chai GS, Cheng W, Zhao Z, Wang J, Luo GZ, Cao N (2021) Targeted RNA N6-methyladenosine demethylation controls cell fate transition in human pluripotent stem cells. Adv Sci (Weinh) 8:e2003902

  • Choi J, Huebner AJ, Clement K, Walsh RM, Savol A, Lin K, Gu H, Di Stefano B, Brumbaugh J, Kim SY, Sharif J, Rose CM, Mohammad A, Odajima J, Charron J, Shioda T, Gnirke A, Gygi S, Koseki H, Sadreyev RI, Xiao A, Meissner A, Hochedlinger K (2017) Prolonged Mek1/2 suppression impairs the developmental potential of embryonic stem cells. Nature 548:219–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clapier CR, Iwasa J, Cairns BR, Peterson CL (2017) Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat Rev Mol Cell Biol 18:407–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collier AJ, Bendall A, Fabian C, Malcolm AA, Tilgner K, Semprich CI, Wojdyla K, Nisi PS, Kishore K, Roamio Franklin VN, Mirshekar-Syahkal B, D'Santos C, Plath K, Yusa K, Rugg-Gunn PJ (2022) Genome-wide screening identifies Polycomb repressive complex 1.3 as an essential regulator of human naïve pluripotent cell reprogramming. Sci Adv 8:eabk0013

    Article  Google Scholar 

  • Cornacchia D, Zhang C, Zimmer B, Chung SY, Fan Y, Soliman MA, Tchieu J, Chambers SM, Shah H, Paull D, Konrad C, Vincendeau M, Noggle SA, Manfredi G, Finley L, Cross JR, Betel D, Studer L (2019) Lipid Deprivation Induces a Stable, Naive-to-Primed Intermediate State of Pluripotency in Human PSCs. Cell Stem Cell 25:120–136.e10

  • Cui Y, Li T, Yang D, Li S, Le W (2016) miR-29 regulates Tet1 expression and contributes to early differentiation of mouse ESCs. Oncotarget 7:64932–64941

    Article  PubMed  PubMed Central  Google Scholar 

  • Dalcher D, Tan JY, Bersaglieri C, Peña-Hernández R, Vollenweider E, Zeyen S, Schmid MW, Bianchi V, Butz S, Roganowicz M, Kuzyakiv R, Baubec T, Marques AC, Santoro R (2020) BAZ2A safeguards genome architecture of ground-state pluripotent stem cells. EMBO J 39:e105606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Iaco A, Planet E, Coluccio A, Verp S, Duc J, Trono D (2017) DUX-family transcription factors regulate zygotic genome activation in placental mammals. Nat Genet 49:941–945

    Article  PubMed  PubMed Central  Google Scholar 

  • De Los Angeles A, Ferrari F, Xi R, Fujiwara Y, Benvenisty N, Deng H, Hochedlinger K, Jaenisch R, Lee S, Leitch HG, Lensch MW, Lujan E, Pei D, Rossant J, Wernig M, Park PJ, Daley GQ (2015) Hallmarks of pluripotency. Nature 525:469–78

  • Di Stefano B, Ueda M, Sabri S, Brumbaugh J, Huebner AJ, Sahakyan A, Clement K, Clowers KJ, Erickson AR, Shioda K, Gygi SP, Gu H, Shioda T, Meissner A, Takashima Y, Plath K, Hochedlinger K (2018) Reduced MEK inhibition preserves genomic stability in naive human embryonic stem cells. Nat Methods 15:732–740

    Article  PubMed  PubMed Central  Google Scholar 

  • Dixon JR, Jung I, Selvaraj S, Shen Y, Antosiewicz-Bourget JE, Lee AY, Ye Z, Kim A, Rajagopal N, Xie W, Diao Y, Liang J, Zhao H, Lobanenkov VV, Ecker JR, Thomson JA, Ren B (2015) Chromatin architecture reorganization during stem cell differentiation. Nature 518:331–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du P, Pirouz M, Choi J, Huebner AJ, Clement K, Meissner A, Hochedlinger K, Gregory RI (2018) An intermediate pluripotent state controlled by microRNAs is required for the naive-to-primed stem cell transition. Cell Stem Cell 22:851–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durruthy-Durruthy J, Sebastiano V, Wossidlo M, Cepeda D, Cui J, Grow EJ, Davila J, Mall M, Wong WH, Wysocka J, Au KF, Reijo Pera RA (2016) The primate-specific noncoding RNA HPAT5 regulates pluripotency during human preimplantation development and nuclear reprogramming. Nat Genet 48:44–52

    Article  CAS  PubMed  Google Scholar 

  • Eckersley-Maslin MA, Svensson V, Krueger C, Stubbs TM, Giehr P, Krueger F, Miragaia RJ, Kyriakopoulos C, Berrens RV, Milagre I, Walter J, Teichmann SA, Reik W (2016) MERVL/Zscan4 network activation results in transient genome-wide DNA demethylation of mESCs. Cell Rep 17:179–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  CAS  PubMed  Google Scholar 

  • Ficz G, Hore TA, Santos F, Lee HJ, Dean W, Arand J, Krueger F, Oxley D, Paul YL, Walter J, Cook SJ, Andrews S, Branco MR, Reik W (2013) FGF signaling inhibition in ESCs drives rapid genome-wide demethylation to the epigenetic ground state of pluripotency Cell Stem Cell 13:351–359

  • Fidalgo M, Huang X, Guallar D, Sanchez-Priego C, Valdes VJ, SaundersA DJ, Wu WS, Clavel C, Wang J (2016) Zfp281 coordinates opposing functions of Tet1 and Tet2 in pluripotent states. Cell Stem Cell 19:355–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finley L, Vardhana SA, Carey BW, Alonso-Curbelo D, Koche R, Chen Y, Wen D, King B, Radler MR, Rafii S, Lowe SW, Allis CD, Thompson CB (2018) Pluripotency transcription factors and Tet1/2 maintain Brd4-independent stem cell identity. Nat Cell Biol 20:565–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friel R, van der Sar S, Mee PJ (2005) Embryonic stem cells: understanding their history, cell biology and signalling. Adv Drug DelivRev 57:1894–1903

    Article  CAS  Google Scholar 

  • Fu H, Zhang W, Li N, Yang J, Ye X, Tian C, Lu X, Liu L (2021) Elevated retrotransposon activity and genomic instability in primed pluripotent stem cells. Genome Biol 22:201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu X, Djekidel MN, Zhang Y (2020) A transcriptional roadmap for 2C-like-to-pluripotent state transition. Sci Adv 6:eaay5181

  • Gao X, Nowak-Imialek M, Chen X, Chen D, Herrmann D, Ruan D, Chen ACH, Eckersley-Maslin MA, Ahmad S, Lee YL, Kobayashi T, Ryan D, Zhong J, Zhu J, Wu J, Lan G, Petkov S, Yang J, Antunes L, Campos LS, Fu B, Wang S, Yong Y, Wang X, Xue SG, Ge L, Liu Z, Huang Y, Nie T, Li P, Wu D, Pei D, Zhang Y, Lu L, Yang F, Kimber SJ, Reik W, Zou X, Shang Z, Lai L, Surani A, Tam PPL, Ahmed A, Yeung WSB, Teichmann SA, Niemann H, Liu P (2019) Establishment of porcine and human expanded potential stem cells. Nat Cell Biol 21:687–699

    Article  Google Scholar 

  • Gardner RL (1998) Contributions of blastocyst micromanipulation to the study of mammalian development. BioEssays 20:168–80

  • Gatchalian J, Malik S, Ho J, Lee DS, Kelso TW, Shokhirev MN, Dixon JR, Hargreaves DC (2018) A non-canonical BRD9-containing BAF chromatin remodeling complex regulates naive pluripotency in mouse embryonic stem cells. Nat Commun 9:1–16

    Article  CAS  Google Scholar 

  • Gates LA, Foulds CE, O’Malley BW (2017) Histone marks in the ‘driver’s seat’: functional roles in steering the transcription cycle. Trends Biochem Sci 42:977–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Genet M, Torres-Padilla ME (2020) The molecular and cellular features of 2-cell-like cells: a reference guide. Development 147:dev189688

  • Geula S, Moshitch-Moshkovitz S, Dominissini D, Mansour AA, Kol N, Salmon-Divon M, Hershkovitz V, Peer E, Mor N, Manor YS, Ben-Haim MS, Eyal E, Yunger S, Pinto Y, Jaitin DA, Viukov S, Rais Y, Krupalnik V, Chomsky E, Zerbib M, Maza I, Rechavi Y, Massarwa R, Hanna S, Amit I, Levanon EY, Amariglio N, Stern-Ginossar N, Novershtern N, Rechavi G, Hanna JH (2015) Stem cells. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation. Science 347:1002–1006

    Article  CAS  PubMed  Google Scholar 

  • Ghosh A, Som A (2021) Decoding molecular markers and transcriptional circuitry of naive and primed states of human pluripotency. Stem Cell Res 53:102334

    Article  CAS  PubMed  Google Scholar 

  • Giulitti S, Pellegrini M, Zorzan I, Martini P, Gagliano O, Mutarelli M, Ziller MJ, Cacchiarelli D, Romualdi C, Elvassore N, Martello G (2019) Direct generation of human naive induced pluripotent stem cells from somatic cells in microfluidics. Nat Cell Biol 21:275–286

    Article  CAS  PubMed  Google Scholar 

  • Gökbuget D, Blelloch R (2019) Epigenetic control of transcriptional regulation in pluripotency and early differentiation. Development 146:dev164772

  • Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128:635–638

    Article  CAS  PubMed  Google Scholar 

  • Grow EJ, Flynn RA, Chavez SL, Bayless NL, Wossidlo M, Wesche DJ, Martin L, Ware CB, Blish CA, Chang HY, Pera RA, Wysocka J (2015) Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells. Nature 522:221–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu TP, Guo F, Yang H, Wu HP, Xu GF, Liu W, Xie ZG, Shi L, He X, Jin SG, Iqbal K, Shi YG, Deng Z, Szabó PE, Pfeifer GP, Li J, Xu GL (2011) The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 477:606–610

    Article  CAS  PubMed  Google Scholar 

  • Guo G, Pinello L, Han X, Lai S, Shen L, Lin TW, Zou K, Yuan GC, Orkin SH (2016a) Serum-based culture conditions provoke gene expression variability in mouse embryonic stem cells as revealed by single-cell analysis. Cell Rep 14:956–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo G, von Meyenn F, Santos F, Chen Y, Reik W, Bertone P, Smith A, Nichols J (2016b) Naive pluripotent stem cells derived directly from isolated cells of the human inner cell mass. Stem Cell Reports 6:437–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo R, Ye X, Yang J, Zhou Z, Tian C, Wang H, Wang H, Fu H, Liu C, Zeng M, Yang J, Liu L (2018) Feeders facilitate telomere maintenance and chromosomal stability of embryonic stem cells. Nat Commun 9:2620

    Article  PubMed  PubMed Central  Google Scholar 

  • Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15:509–524

    Article  CAS  PubMed  Google Scholar 

  • Habibi E, Brinkman AB, Arand J, Kroeze LI, Kerstens HH, Matarese F, Lepikhov K, Gut M, Brun-Heath I, Hubner NC, Benedetti R, Altucci L, Jansen JH, Walter J, Gut IG, Marks H, Stunnenberg HG (2013) Whole-genome bisulfite sequencing of two distinct interconvertible DNA methylomes of mouse embryonic stem cells. Cell Stem Cell 13:360–9

  • Hacker V (1892) Archiv F Mikr Anat 39:556–581

    Article  Google Scholar 

  • Hackett JA, Surani MA (2014) Regulatory principles of pluripotency: from the ground state up. Cell Stem Cell 15:416–430

    Article  CAS  PubMed  Google Scholar 

  • Haeckel E (1877) Anthropogenie oder Entwickelungsgeschichte des Menschen, Keimes-und stammesgeschichte. Engelmann, Leipzig

  • Hales BF, Grenier L, Lalancette C, Robaire B (2011) Epigenetic programming: from gametes to blastocyst. Birth Defects Res A Clin Mol Teratol 91:652–665

    Article  CAS  PubMed  Google Scholar 

  • Hanna J, Cheng AW, Saha K, Kim J, Lengner CJ, Soldner F, Cassady JP, Muffat J, Carey BW, Jaenisch R (2010) Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proc Natl Acad Sci U S A 107:9222–9227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harikumar A, Meshorer E (2015) Chromatin remodeling and bivalent histone modifications in embryonic stem cells. EMBO Rep 16:1609–1619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi K, Ohta H, Kurimoto K, Aramaki S, Saitou M (2011) Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 146:519–532

    Article  CAS  PubMed  Google Scholar 

  • Heard E (2004) Recent advances in X-chromosome inactivation. CurrOpin Cell Biol 3:247–255

    Google Scholar 

  • Hendrich B, Guy J, Ramsahoye B, Wilson VA, Bird A (2001) Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development. Genes Dev 15:710–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirasaki M, Ueda A, Asaka MN, Uranishi K, Suzuki A, Kohda M, Mizuno Y, Okazaki Y, Nishimoto M, Sharif J, Koseki H, Okuda A (2018) Identification of the coiled-coil domain as an essential methyl-CpG-binding domain protein 3 element for preserving lineage commitment potential of embryonic stem cells. Stem Cells 36:1355–1367

    Article  CAS  PubMed  Google Scholar 

  • Ho L, Crabtree GR (2010) Chromatin remodelling during development. Nature 463:474–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hochedlinger K, Jaenisch R. (2015) Induced pluripotency and epigenetic reprogramming. Cold Spring Harb Perspect Biol 7:a019448

  • Hoffmann A, Spengler D (2019) Chromatin remodeling complex NuRD in neurodevelopment and neurodevelopmental disorders. Front Genet 10:682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hon GC, Song CX, Du T, Jin F, Selvaraj S, Lee AY, Yen CA, Ye Z, Mao SQ, Wang BA, Kuan S, Edsall LE, Zhao BS, Xu GL, He C, Ren B (2014) 5mC oxidation by Tet2 modulates enhancer activity and timing of transcriptome reprogramming during differentiation. Mol Cell 56:286–297

  • Hore TA, von Meyenn F, Ravichandran M, Bachman M, Ficz G, Oxley D, Santos F, Balasubramanian S, Jurkowski TP, Reik W (2016) Retinol and ascorbate drive erasure of epigenetic memory and enhance reprogramming to naïve pluripotency by complementary mechanisms. Proc Natl Acad Sci U S A 113:12202–12207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu D, Gao X, Morgan MA, Herz HM, Smith ER, Shilatifard A (2013) The MLL3/MLL4 branches of the COMPASS family function as major histone H3K4 monomethylases at enhancers. Mol Cell Biol 33:4745–4754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu G, Wade PA (2012) NuRD and pluripotency: a complex balancing act. Cell Stem Cell 10:497–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishiuchi T, Enriquez-Gasca R, Mizutani E, Bošković A, Ziegler-Birling C, Rodriguez-Terrones D, Wakayama T, Vaquerizas JM, Torres-Padilla ME (2015) Early embryonic-like cells are induced by downregulating replication-dependent chromatin assembly. Nat Struct Mol Biol 22:662–671

    Article  CAS  PubMed  Google Scholar 

  • Iurlaro M, von Meyenn F, Reik W (2017) DNA methylation homeostasis in human and mouse development. CurrOpin Genet 43:101–109

    CAS  Google Scholar 

  • Jambhekar A, Dhall A, Shi Y (2019) Roles and regulation of histone methylation in animal development. Nat Rev Mol Cell Biol 20:625–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji X, Dadon DB, Powell BE, Fan ZP, Borges-Rivera D, Shachar S, Weintraub AS, Hnisz D, Pegoraro G, Lee TI, Misteli T, Jaenisch R, Young RA (2016) 3D chromosome regulatory landscape of human pluripotent cells. Cell Stem Cell 18:262–275

    Article  CAS  PubMed  Google Scholar 

  • Joshi O, Wang SY, Kuznetsova T, Atlasi Y, Peng T, Fabre PJ, Habibi E, Shaik J, Saeed S, Handoko L, Richmond T, Spivakov M, Burgess D, Stunnenberg HG (2015) Dynamic reorganization of extremely long-range promoter-promoter interactions between two states of pluripotency. Cell Stem Cell 7:748–757

    Article  Google Scholar 

  • Jouneau A, Ciaudo C, Sismeiro O, Brochard V, Jouneau L, Coppée V-P, JY, Zhou Q, Heard E, Antoniewski C, Cohen-Tannoudji M, (2012) Naive and primed murine pluripotent stem cells have distinct miRNA expression profiles. RNA 18:253–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadoch C, Copeland RA, Keilhack H (2016) PRC2 and SWI/SNF chromatin remodeling complexes in health and disease. Biochemistry 55:1600–1614

    Article  CAS  PubMed  Google Scholar 

  • Kalkan T, Bornelöv S, Mulas C, Diamanti E, Lohoff T, Ralser M, Middelkamp S, Lombard P, Nichols J, Smith A (2019) Complementary activity of ETV5, RBPJ, and TCF3 drives formative transition from naïve pluripotency. Cell Stem Cell 24:785–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalkan T, Olova N, Roode M, Mulas C, Lee HJ, Nett I, Marks H, Walker R, Stunnenberg HG, Lilley KS, Nichols J, Reik W, Bertone P, Smith A (2017) Tracking the embryonic stem cell transition from ground state pluripotency. Development 144:1221–1234

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kalkan T, Smith A (2014) Mapping the route from naive pluripotency to lineage specification. Philos Trans R Soc B 369:20130540

    Article  Google Scholar 

  • Khoa L, Tsan YC, Mao F, Kremer DM, Sajjakulnukit P, Zhang L, Zhou B, Tong X, Bhanu NV, Choudhary C, Garcia BA, Yin L, Smith GD, Saunders TL, Bielas SL, Lyssiotis CA, Dou Y (2020) Histone acetyltransferase MOF blocks acquisition of quiescence in ground-state ESCs through activating fatty acid oxidation. Cell Stem Cell 27:441-458.e10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kidder BL, Palmer S, Knott JG (2009) SWI/SNF-Brg1 regulates self-renewal and occupies core pluripotency-related genes in embryonic stem cells. Stem Cells 27:317–328

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita M, Barber M, Mansfield W, Cui Y, Spindlow D, Stirparo GG, Dietmann S, Nichols J, Smith A (2021) Capture of mouse and human stem cells with features of formative pluripotency. Cell Stem Cell 28:453-471.e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koche RP, Smith ZD, Adli M, Gu H, Ku M, Gnirke A, Bernstein BE, Meissner A (2011) Reprogramming factor expression initiates widespread targeted chromatin remodeling. Cell Stem Cell 8:96–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohli RM, Zhang Y (2013) TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502:472–479

  • Krishnakumar R, Chen AF, Pantovich MG, Danial M, Parchem RJ, Labosky PA, Blelloch R (2016) FOXD3 regulates pluripotent stem cell potential by simultaneously initiating and repressing enhancer activity. Cell Stem Cell 18:104–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruse K, Diaz N, Enriquez-Gasca R, Gaume X, Torres-Padilla ME, Vaquerizas JM (2019) Transposable elements drive reorganisation of 3D chromatin during early embryogenesis. bioRxiv. https://doi.org/10.1101/523712

  • Lee JE, Wang C, Xu S, Cho YW, Wang L, Feng X, Baldridge A, Sartorelli V, Zhuang L, Peng W, Ge K (2013) H3K4 mono- and di-methyltransferase MLL4 is required for enhancer activation during cell differentiation. Elife 2:e01503

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Lee JB, Shapovalova Z, Fiebig-Comyn A, Mitchell RR, Laronde S, Szabo E, Benoit YD, Bhatia M (2014) Somatic transcriptome priming gates lineagespecific differentiation potential of human-induced pluripotent stem cell states. Nat Commun 5:5605

  • Leitch HG, McEwen KR, Turp A, Encheva V, Carroll T, Grabole N, Mansfield W, Nashun B, Knezovich JG, Smith A, Surani MA, Hajkova P (2013) Naive pluripotency is associated with global DNA hypomethylation. Nat Struct Mol Biol 20:311–316

  • Li MA, Amaral PP, Cheung P, Bergmann JH, Kinoshita M, Kalkan T, Ralser M, Robson S, von Meyenn F, Paramor M, Yang F, Chen C, Nichols J, Spector DL, Kouzarides T, He L, Smith A (2017) A lncRNA fine tunes the dynamics of a cell state transition involving Lin28, let-7 and de novo DNA methylation. Elife 6:e23468

    Article  PubMed  PubMed Central  Google Scholar 

  • Li YP, Duan FF, Zhao YT, Gu KL, Liao LQ, Su HB, Hao J, Zhang K, Yang N, Wang Y (2019) A TRIM71 binding long noncoding RNA Trincr1 represses FGF/ERK signaling in embryonic stem cells. Nat Commun 10:1368

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu J, Gao M, He J, Wu K, Lin S, Jin L, Chen Y, Liu H, Shi J, Wang X, Chang L, Lin Y, Zhao YL, Zhang X, Zhang M, Luo GZ, Wu G, Pei D, Wang J, Bao X, Chen J (2021) The RNA m6A reader YTHDC1 silences retrotransposons and guards ES cell identity. Nature 591:322–326

    Article  CAS  PubMed  Google Scholar 

  • Liu N, Pan T (2015) RNA epigenetics. Transl Res 165:28–35

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Gao Q, Li P, Zhao Q, Zhang J, Li J, Koseki H, WongJ, (2013) UHRF1 targets DNMT1 for DNA methylation through cooperative binding of hemi-methylated DNA and methylated H3K9. Nat Commun 4:1563

    Article  PubMed  Google Scholar 

  • Luo Z, Gao X, Lin C, Smith ER, Marshall SA, Swansonn SK, Florens L, Washburn MP, Shilatifard A (2015) Zic2 is an enhancer-binding factor required for embryonic stem cell specification. Mol Cell 57:685–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maksakova IA, Thompson PJ, Goyal P, Jones SJ, Singh PB, Karimi MM, Lorincz MC (2013) Distinct roles of KAP1, HP1 and G9a/GLP in silencing of the two-cell-specific retrotransposon MERVL in mouse ES cells. Epigenetics Chromatin 6:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marió RM, Montero JJ, López de Silanes I, Graña-Castro O, Martínez P, Schoeftner SPalacios-Fábrega JA, Blasco MA, (2019) TERRA regulate the transcriptional landscape of pluripotent cells through TRF1-dependent recruitment of PRC2. Elife 8:e44656

    Article  Google Scholar 

  • Marks H, Kalkan T, Menafra R, Denissov S, Jones K, Hofemeister H, Nichols J, Kranz A, Stewart AF, Smith A, Stunnenberg HG (2012) The transcriptional and epigenomic foundations of ground state pluripotency. Cell 149:590–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marks H, Stunnenberg HG (2014) Transcription regulation and chromatin structure in the pluripotent ground state. Biochim Biophys Acta 1839:129–137

    Article  CAS  PubMed  Google Scholar 

  • Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78:7634–7638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin GR, Evans MJ (1975) Differentiation of clonal lines of teratocarcinoma cells: formation of embryoid bodies in vitro. Proc Natl Acad Sci U S A 72:1441–1445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer D, Stadler MB, Rittirsch M, Hess D, Lukonin I, Winzi M, Smith A, Buchholz F, Betschinger J (2020) Zfp281 orchestrates interconversion of pluripotent states by engaging Ehmt1 and Zic2. EMBO J 39:e102591

    Article  CAS  PubMed  Google Scholar 

  • Melamed P, Yosefzon Y, David C, Tsukerman A, Pnueli L (2018) Tet enzymes, variants, and differential effects on function. Front Cell Dev Biol 6:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Memili E, Hong YK, Kim DH, Ontiveros SD, Strauss WM (2001) Murine Xist RNA isoforms are different at their 3’ ends: a role for differential polyadenylation. Gene 266:131–137

    Article  CAS  PubMed  Google Scholar 

  • Meshorer E, Yellajoshula D, George E, Scambler PJ, Brown DT, Misteli T (2006) Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev Cell 10:105–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Messmer T, von Meyenn F, Savino A, Santos F, Mohammed H, Lun A, Marioni JC, Reik W (2019) Transcriptional heterogeneity in naive and primed human pluripotent stem cells at single-cell resolution. Cell Rep 26:815–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mor N, Rais Y, Sheban D, Peles S, Aguilera-Castrejon A, Zviran A, Elinger D, Viukov S, Geula S, Krupalnik V, Zerbib M, Chomsky E, Lasman L, Shani T, Bayerl J, Gafni O, Hanna S, Buenrostro JD, Hagai T, Masika H, Vainorius G, Bergman Y, Greenleaf WJ, Esteban MA, Elling U, Levin Y, Massarwa R, Merbl Y, Novershtern N, Hanna JH (2018) Neutralizing Gatad2a-Chd4-Mbd3/NuRD complex facilitates deterministic induction of naive pluripotency. Cell Stem Cell 23:412–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulholland CB, Nishiyama A, Ryan J, Nakamura R, Yiğit M, Glück IM, Trummer C, Qin W, Bartoschek MD, Traube FR, Parsa E, Ugur E, Modic M, Acharya A, Stolz P, Ziegenhain C, Wierer M, Enard W, Carell T, Lamb DC, Takeda H, Nakanishi M, Bultmann S, Leonhardt H (2020) Recent evolution of a TET-controlled and DPPA3/STELLA-driven pathway of passive DNA demethylation in mammals. Nat Commun 11:5972. Nature 502:472–479.

  • Neagu A, van Genderen E, Escudero I, Verwegen L, Kurek D, Lehmann J, Stel J, Dirks R, van Mierlo G, Maas A, Eleveld C, Ge Y, den Dekker AT, Brouwer R, van IJcken W, Modic M, Drukker M, Jansen JH, Rivron NC, Baart EB, Ten Berge D, (2020) In vitro capture and characterization of embryonic rosette-stage pluripotency between naive and primed states. Nat Cell Biol 22:534–545

    Article  CAS  PubMed  Google Scholar 

  • Nestorov P, Hotz HR, Liu Z, Peters AH (2015) Dynamic expression of chromatin modifiers during developmental transitions in mouse preimplantation embryos. Sci Rep 5:14347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nichols J, Smith A (2009) Naive and primed pluripotent states. Cell Stem Cell 4:487–492

    Article  CAS  PubMed  Google Scholar 

  • Obier N, Lin Q, Cauchy P, Hornich V, Zenke M, Becker M, Müller AM (2015) Polycomb protein EED is required for silencing of pluripotency genes upon ESC differentiation. Stem Cell Rev Rep 11:50–61

    Article  CAS  PubMed  Google Scholar 

  • Pandolfin L, Luzi E, Bressan D, Ucciferri N, Bertacchi M, Brandi R, Rocchiccioli S, D’Onofrio M, Cremisi F (2016) RISC-mediated control of selected chromatin regulators stabilizes ground state pluripotency of mouse embryonic stem cells. Genome Biol 17:94

    Article  Google Scholar 

  • Papp B, Plath K (2013) Epigenetics of reprogramming to induced pluripotency. Cell 152:1324–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasini D, Bracken AP, Jensen MR, LazzeriniDenchi E, Helin K (2004) Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J 23:4061–4071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pękowska A, Klaus B, Xiang W, Severino J, Daigle N, Klein FA, Oleś M, Casellas R, Ellenberg J, Steinmetz LM, Bertone P, Huber W (2018) Gain of CTCF-anchored chromatin loops marks the exit from naive pluripotency. Cell Syst 7:482–495

    Article  PubMed  PubMed Central  Google Scholar 

  • Pera MF, Rossant J (2021) The exploration of pluripotency space: charting cell state transitions in peri-implantation development. Cell Stem Cell 28:1896–1906

    Article  CAS  PubMed  Google Scholar 

  • Peric-Hupkes D, Meuleman W, Pagie L, Bruggeman SW, Solovei I, Brugman W, Gräf S, Flicek P, Kerkhoven RM, van Lohuizen M, Reinders M, Wessels L, van Steensel B (2010) Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol Cell 38:603–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perrera V, Martello G. How does reprogramming to pluripotency affect genomic imprinting (2019) Front Cell Dev Biol 7:76

  • Phillips-Cremins JE, Sauria ME, Sanyal A, Gerasimova TI, Lajoie BR, Bell JS, Ong CT, Hookway TA, Guo C, Sun Y, Bland MJ, Wagstaff W, Dalton S, McDevitt TC, Sen R, Dekker J, Taylor J, Corces VG (2013) Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell 153:1281–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ, Adhikari S, Shi Y, Lv Y, Chen YS, Zhao X, Li A, Yang Y, Dahal U, Lou XM, Liu X, Huang J, Yuan WP, Zhu XF, Cheng T, Zhao YL, Wang X, Rendtlew Danielsen JM, Liu F, Yang YG (2014) Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res 24:177–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds N, Latos P, Hynes-Allen A, Loos R, Leaford D, Shaughnessy A, Mosaku O, Signolet J, Brennecke P, Kalkan T, Costello I, Humphreys P, Mansfield W, Nakagawa K, Strouboulis J, Behrens A, Bertone P, Hendrich B (2012) NuRD suppresses pluripotency gene expression to promote transcriptional heterogeneity and lineage commitment. Cell Stem Cell 10:583–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossant J, Tam PPL (2017) New insights into early human development: lessons for stem cell derivation and differentiation. Cell Stem Cell 20:18–28

    Article  CAS  PubMed  Google Scholar 

  • Santoro SW, Dulac C (2015) Histone variants and cellular plasticity. Trends Genet 31:516–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schindler M, Siriwardena D, Kohler TN, Ellermann AL, Slatery E, Munger C, Hollfelder F, Boroviak TE (2021) Agarose microgel culture delineates lumenogenesis in naive and primed human pluripotent stem cells. Stem Cell Rep 16:1347–1362

    Article  CAS  Google Scholar 

  • Schoenfelder S, Fraser P (2019) Long-range enhancer-promoter contacts in gene expression control. Nat Rev Genet 20:437–455

    Article  CAS  PubMed  Google Scholar 

  • Scognamiglio R, Cabezas-Wallscheid N, Thier MC, Altamura S, Reyes A, Prendergast ÁM, Baumgärtner D, Carnevalli LS, Atzberger A, Haas S, von Paleske L, Boroviak T, Wörsdörfer P, Essers MA, Kloz U, Eisenman RN, Edenhofer F, Bertone P, Huber W, van der Hoeven F, Smith A, Trumpp A (2016) Myc depletion induces a pluripotent dormant state mimicking diapause. Cell 164:668–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shanak S, Helms V (2020) DNA methylation and the core pluripotency network. Dev Biol 464:145–160

    Article  CAS  PubMed  Google Scholar 

  • Sheik Mohamed J, Gaughwin PM, Lim B, Robson P, Lipovich L (2010) Conserved long noncoding RNAs transcriptionally regulated by Oct4 and Nanog modulate pluripotency in mouse embryonic stem cells. RNA 16:324–337

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi L, Wu J (2009) Epigenetic regulation in mammalian preimplantation embryo development. Reprod Biol Endocrinol 7:59

    Article  PubMed  PubMed Central  Google Scholar 

  • Sim YJ, Kim MS, Nayfeh A, Yun YJ, Kim SJ, Park KT, Kim CH, Kim KS (2017) 2i maintains a naive ground state in ESCs through two distinct epigenetic mechanisms. Stem Cell Rep 8:1312–1328

    Article  CAS  Google Scholar 

  • Sohni A, Bartoccetti M, Khoueiry R, Spans L, VandeVelde J, De Troyer L, Pulakanti K, Claessens F, Rao S, Koh KP (2015) Dynamic switching of active promoter and enhancer domains regulates Tet1 and Tet2 expression during cell state transitions between pluripotency and differentiation. Mol Cell Biol 35:1026–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sperber H, Mathieu J, Wang Y, Ferreccio A, Hesson J, Xu Z, Fischer KA, Devi A, Detraux D, Gu H, Battle SL, Showalter M, Valensisi C, Bielas JH, Ericson NG, Margaretha L, Robitaille AM, Margineantu D, Fiehn O, Hockenbery D, Blau CA, Raftery D, Margolin AA, Hawkins RD, Moon RT, Ware CB, Ruohola-Baker H (2015) The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition. Nat Cell Biol 17:1523–1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stirparo GG, Boroviak T, Guo G, Nichols J, Smith A, Bertone P (2018) Integrated analysis of single-cell embryo data yields a unified transcriptome signature for the human pre-implantation epiblast. Development 145:dev158501

  • Sun HL, Zhu AC, Gao Y, Terajima H, Fei Q, Liu S, Zhang L, Zhang Z, Harada BT, He YY, Bissonnette MB, Hung MC, He C (2020) Stabilization of ERK-phosphorylated METTL3 by USP5 increases m6A methylation. Mol Cell 80:633-647.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Z, Zhu M, Lv P, Cheng L, Wang Q, Tian P, Yan Z, Wen B (2018) The long noncoding RNA Lncenc1 maintains naive states of mouse ESCs by promoting the glycolysis pathway. Stem Cell Rep 11:741–755

    Article  CAS  Google Scholar 

  • Syed KM, Joseph S, Mukherjee A, Majumder A, Teixeira JM, Dutta D, Pillai MR (2016) Histone chaperone APLF regulates induction of pluripotency in murine fibroblasts. J Cell Sci 129:4576–4591

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taberlay PC, Kelly TK, Liu CC, You JS, De Carvalho DD, Miranda TB, Zhou XJ, Liang G, Jones PA (2011) Polycomb-repressed genes have permissive enhancers that initiate reprogramming. Cell 147:1283–1294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi S, Kobayashi S, Hiratani I (2018) Epigenetic differences between naïve and primed pluripotent stem cells. Cell Mol Life Sci 75:1191–1203

    Article  CAS  PubMed  Google Scholar 

  • Takashima Y, Guo G, Loos R, Nichols J, Ficz G, Krueger F, Oxley D, Santos F, Clarke J, Mansfield W, Reik W, Bertone P, Smith A (2014) Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell 158:1254–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL, Gardner RL, McKay RD (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448:196–199

    Article  CAS  PubMed  Google Scholar 

  • Theunissen TW, Powell BE, Wang H, Mitalipova M, Faddah DA, Reddy J, Fan ZP, Maetzel D, Ganz K, Shi L, Lungjangwa T, Imsoonthornruksa S, Stelzer Y, Rangarajan S, D'Alessio A, Zhang J, Gao Q, Dawlaty MM, Young RA, Gray NS, Jaenisch R (2014) Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell 15:471–487

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  CAS  PubMed  Google Scholar 

  • Thorpe SD, Lee DA (2017) Dynamic regulation of nuclear architecture and mechanics—a rheostatic role for the nucleus in tailoring cellular mechanosensitivity. Nucleus 8:287–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tosolini M, Brochard V, Adenot P, Chebrout M, Grillo G, Navia V, Beaujean N, Francastel C, Bonnet-Garnier A, Jouneau A (2018) Contrasting epigenetic states of heterochromatin in the different types of mouse pluripotent stem cells. Sci Rep 8:5776

    Article  PubMed  PubMed Central  Google Scholar 

  • Trixl L, Amort T, Wille A, Zinni M, Ebner S, Hechenberger C, Eichin F, Gabriel H, Schoberleitner I, Huang A, Piatti P, Nat R, Troppmair J, Lusser A (2018) RNA cytosine methyltransferase Nsun3 regulates embryonic stem cell differentiation by promoting mitochondrial activity. Cell Mol Life Sci 75:1483–1497

    Article  CAS  PubMed  Google Scholar 

  • Tsukiyama T, Ohinata Y (2014) A modified EpiSC culture condition containing a GSK3 inhibitor can support germline-competent pluripotency in mice. PLoS ONE 9:e95329

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Mierlo G, Dirks RA, De Clerck L, Brinkman AB, Huth M, Kloet SL, Saksouk N, Kroeze LI, Willems S, Farlik M, Bock C, Jansen JH, Deforce D, Vermeulen M, Déjardin J, Dhaenens M, Marks H (2019a) Integrative proteomic profiling reveals PRC2-dependent epigenetic crosstalk maintains ground-state pluripotency. Cell Stem Cell 24:123–137

    Article  PubMed  Google Scholar 

  • Van Mierlo G, Wester RA, Marks H (2019b) A mass spectrometry survey of chromatin-associated proteins in pluripotency and early lineage commitment. Proteomics 19:e1900047

    Article  PubMed  Google Scholar 

  • Vitale I, Manic G, De Maria R, Kroemer G, Galluzzi L (2017) DNA damage in stem cells. Mol Cell 66:306–319

    Article  CAS  PubMed  Google Scholar 

  • Voigt P, Tee WW, Reinberg D (2013) A double take on bivalent promoters. Genes Dev 27:1318–1338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waddington CH (2014). The strategy of the genes. Routledge

  • Wang J, Xie G, Singh M, Ghanbarian AT, Raskó T, Szvetnik A, Cai H, Besser D, Prigione A, Fuchs NV, Schumann GG, Chen W, Lorincz MC, Ivics Z, Hurst LD, Izsvák Z (2014a) Primate-specific endogenous retrovirus-driven transcription defines naive-like stem cells. Nature 516:405–409

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Xiang Y, Yu Y, Wang R, Zhang Y, Xu Q, Sun H, Zhao ZA, Jiang X, Wang X, Lu X, Qin D, Quan Y, Zhang J, Shyh-Chang N, Wang H, Jing N, Xie W, Li L (2021a) Formative pluripotent stem cells show features of epiblast cells poised for gastrulation. Cell Res 31:526–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Hussein AM, Somasundaram L, Sankar R, Detraux D, Mathieu J, Ruohola-Baker H (2019a) microRNAs regulating human and mouse naïve pluripotency. Int J Mol Sci 20:5864

    Article  CAS  PubMed Central  Google Scholar 

  • Wang Y, Li Y, Toth JI, Petroski MD, Zhang Z, Zhao JC (2014b) N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat Cell Biol 16:191–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Na Q, Li X, Tee WW, Wu B, Bao S (2021b) Retinoic acid induces NELFA-mediated 2C-like state of mouse embryonic stem cells associates with epigenetic modifications and metabolic processes in chemically defined media. Cell Prolif 54:e13049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WangY GB, Xiao Z, Lin H, Zhang X, Song Y, Li Y, Gao X, Yu J, Shao Z, Li X, Luo Y, Li S (2019b) Long noncoding RNA CCDC144NL-AS1 knockdown induces naïve-like state conversion of human pluripotent stem cells. Stem Cell Res Ther 10:220

    Article  Google Scholar 

  • Ware CB (2017) Concise review: lessons from naïve human pluripotent cells. Stem Cells 35:35–41

    Article  PubMed  Google Scholar 

  • Weaver JR, Susiarjo M, Bartolomei MS (2009) Imprinting and epigenetic changes in the early embryo. Mamm Genome 20:532–543

    Article  PubMed  Google Scholar 

  • Wei C, Gershowitz A, Moss B (1975) N6, O2’-dimethyladenosine a novel methylated ribonucleoside next to the 5’ terminal of animal cell and virus mRNAs. Nature 257:251–253

    Article  CAS  PubMed  Google Scholar 

  • Weinberger L, Ayyash M, Novershtern N, Hanna JH (2016) Dynamic stem cell states: naive to primed pluripotency in rodents and humans. Nat Rev Mol Cell Biol 17:155–169

    Article  CAS  PubMed  Google Scholar 

  • Wilson EB (1896) The cell in development and inheritance. Macmillan, New York

    Book  Google Scholar 

  • Wu H, D’Alessio AC, Ito S, Xia K, Wang Z, Cui K, Zhao K, Sun YE, Zhang Y (2011) Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature 473:389–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Izpisua Belmonte JC (2015) Dynamic pluripotent stem cell states and their applications. Cell Stem Cell 17:509–525

    Article  CAS  PubMed  Google Scholar 

  • Wu K, Liu H, Wang Y, He J, Xu S, Chen Y, Kuang J, Liu J, Guo L, Li D, Shi R, Shen L, Wang Y, Zhang X, Wang J, Pei D, Chen J (2020) SETDB1-mediated cell fate transition between 2C-like and pluripotent states. Cell Rep 30:25-36.e6

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Zhou C, Yuan Q (2018) Role of DNA and RNA N6-adenine methylation in regulating stem cell fate. Curr Stem Cell Res Ther 13:31–38

    CAS  PubMed  Google Scholar 

  • Xiang Y, Zhang Y, Xu Q, Zhou C, Liu B, Du Z, Zhang K, Zhang B, Wang X, Gayen S, Liu L, Wang Y, Li Y, Wang Q, Kalantry S, Li L, Xie W (2020) Epigenomic analysis of gastrulation identifies a unique chromatin state for primed pluripotency. Nat Genet 52:95–105

    Article  CAS  PubMed  Google Scholar 

  • Xiao S, Lu J, Sridhar B, Cao X, Yu P, Zhao T, Chen CC, McDee D, Sloofman L, Wang Y, Rivas-Astroza M, Telugu B, Levasseur D, Zhang K, Liang H, Zhao JC, Tanaka TS, Stormo G, Zhong S (2017) SMARCAD1 contributes to the regulation of naive pluripotency by interacting with histone citrullination. Cell Rep 18:3117–3128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Wu F, Tan L, Kong L, Xiong L, Deng J, Barbera AJ, Zheng L, Zhang H, Huang S, Min J, Nicholson T, Chen T, Xu G, Shi Y, Zhang K, Shi YG (2011) Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells. Mol Cell 42:451–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yagi M, Kishigami S, Tanaka A, Semi K, Mizutani E, Wakayama S, Wakayama T, Yamamoto T, Yamada Y (2017) Derivation of ground-state female ES cells maintaining gamete-derived DNA methylation. Nature 548:224–227

    Article  CAS  PubMed  Google Scholar 

  • Yamaji M, Ueda J, Hayashi K, Ohta H, Yabuta Y, Kurimoto K, Nakato R, Yamada Y, Shirahige K, Saitou M (2013) PRDM14 ensures naive pluripotency through dual regulation of signaling and epigenetic pathways in mouse embryonic stem cells. Cell Stem Cell 12:368–82

  • Yang F, Huang X, Zang R, Chen J, Fidalgo M, Sanchez-Priego C, Yang J, Caichen A, Ma F, Macfarlan T, Wang H, Gao S, Zhou H, Wang J (2020) DUX-miR-344-ZMYM2-mediated activation of MERVL LTRs induces a totipotent 2C-like state. Cell Stem Cell 26:234-250.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Guo R, Wang H, Ye X, Zhou Z, Dan J, Wang H, Gong P, Deng W, Yin Y, Mao S, Wang L, Ding J, Li J, Keefe DL, Dawlaty MM, Wang J, Xu G, Liu L (2016) Tet enzymes regulate telomere maintenance and chromosomal stability of mouse ESCs. Cell Rep 15:1809–1821

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Ryan DJ, Wang W, Tsang JC, Lan G, Masaki H, Gao X, Antunes L, Yu Y, Zhu Z, Wang J, Kolodziejczyk AA, Campos LS, Wang C, Yang F, Zhong Z, Fu B, Eckersley-Maslin MA, Woods M, Tanaka Y, Chen X, Wilkinson AC, Bussell J, White J, Ramirez-Solis R, Reik W, Göttgens B, Teichmann SA, Tam PPL, Nakauchi H, Zou X, Lu L, Liu P (2017a) Establishment of mouse expanded potential stem cells. Nature 550:393–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang P, Humphrey SJ, Cinghu S, Pathania R, Oldfield AJ, Kumar D, Perera D, Yang JYH, James DE, Mann M, Jothi R (2019) Multi-omic profiling reveals dynamics of the phased progression of pluripotency. Cell Syst 8:427–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Liu B, Xu J, Wang J, Wu J, Shi C, Xu Y, Dong J, Wang C, Lai W, Zhu J, Xiong L, Zhu D, Li X, Yang W, Yamauchi T, Sugawara A, Li Z, Sun F, Li X, Li C, He A, Du Y, Wang T, Zhao C, Li H, Chi X, Zhang H, Liu Y, Li C, Duo S, Yin M, Shen H, Belmonte JCI, Deng H (2017b) Derivation of pluripotent stem cells with in vivo embryonic and extraembryonic potency. Cell 169:243-257.e25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A (2008) The ground state of embryonic stem cell self- renewal. Nature 453:519–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu H, Sun Z, Tan T, Pan H, Zhao J, Zhang L, Chen J, Lei A, Zhu Y, Chen L, Xu Y, Liu Y, Chen M, Sheng J, Xu Z, Qian P, Li C, Gao S, Daley GQ, Zhang J (2021a) rRNA biogenesis regulates mouse 2C-like state by 3D structure reorganization of peri-nucleolar heterochromatin. Nat Commun 12:6365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu L, Wei Y, Sun HX, Mahdi AK, Pinzon Arteaga CA, Sakurai M, Schmitz DA, Zheng C, Ballard ED, Li J, Tanaka N, Kohara A, Okamura D, Mutto AA, Gu Y, Ross PJ, Wu J (2021b) Derivation of intermediate pluripotent stem cells amenable to primordial germ cell specification. Cell Stem Cell 28:550-567.e12

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Gayen S, Xiong J, Zhou B, Shanmugam AK, Sun Y, Karatas H, Liu L, Rao RC, Wang S, Nesvizhskii AI, Kalantry S, Dou Y (2016a) MLL1 inhibition reprograms epiblast stem cells to naive pluripotency. Cell Stem Cell 18:481–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Ratanasirintrawoot S, Chandrasekaran S, Wu Z, Ficarro SB, Yu C, Ross CA, Cacchiarelli D, Xia Q, Seligson M, Shinoda G, Xie W, Cahan P, Wang L, Ng SC, Tintara S, Trapnell C, Onder T, Loh YH, Mikkelsen T, Sliz P, Teitell MA, Asara JM, Marto JA, Li H, Collins JJ, Daley GQ (2016b) LIN28 regulates stem cell metabolism and conversion to primed pluripotency. Cell Stem Cell 19:66–80

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Xia W, Wang Q, Towers AJ, Chen J, Gao R, Zhang Y, Yen CA, Lee AY, Li Y, Zhou C, Liu K, Zhang J, Gu TP, Chen X, Chang Z, Leung D, Gao S, Jiang YH, Xie W (2016c) Isoform switch of TET1 regulates DNA demethylation and mouse development. Mol Cell 64:1062–1073

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Jones A, Sun CW, Li C, Chang CW, Joo HY, Dai Q, Mysliwiec MR, Wu LC, Guo Y, Yang W, Liu K, Pawlik KM, Erdjument-Bromage H, Tempst P, Lee Y, Min J, Townes TM, Wang H (2011) PRC2 complexes with JARID2, MTF2, and esPRC2p48 in ES cells to modulate ES cell pluripotency and somatic cell reprograming. Stem Cells 29:229–240

    Article  PubMed  Google Scholar 

  • Zheng H, Huang B, Zhang B, Xiang Y, Du Z, Xu Q, Li Y, Wang Q, Ma J, Peng X, Xu F, Xie W (2016) Resetting epigenetic memory by reprogramming of histone modifications in mammals. Mol Cell 63:1066–1079

    Article  CAS  PubMed  Google Scholar 

  • Zheng H, Xie W (2019) The role of 3D genome organization in development and cell differentiation. Nat Rev Mol Cell Biol 20:535–550

    Article  CAS  PubMed  Google Scholar 

  • Zheng R, Geng T, Wu DY, Zhang T, He HN, Du HN, Zhang D, Miao YL, Jiang W (2021) Derivation of feeder-free human extended pluripotent stem cells. Stem Cell Rep 16:1686–1696

    Article  CAS  Google Scholar 

  • Zhou W, Choi M, Margineantu D, Margaretha L, Hesson J, Cavanaugh C, Blau CA, Horwitz MS, Hockenbery D, Ware C, Ruohola-Baker H (2012) HIF1α induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition. EMBO J 31:2103–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors thank DD lab members for providing inputs in writing the manuscript.

Funding

The work is funded by Department of Biotechnology (DBT) (#BT/PR17597/MED/31/335/2016; #BT/HRD/NWBA/38/10/2018 and intramural fund to the institute). IB and PCV received support from DBT (#DBT/2020/RGCB/1331) and DST INSPIRE (#IF170833) respectively.

Author information

Authors and Affiliations

Authors

Contributions

IB performed literature search and wrote the manuscript. PCV and AM prepared the figures. DD conceptualized the contents, prepared the final version of the manuscript, and with permission from other authors submitted to the journal.

Corresponding author

Correspondence to Debasree Dutta.

Ethics declarations

Ethics approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baral, I., Varghese, P.C. & Dutta, D. Epigenetics as “conductor” in “orchestra” of pluripotent states. Cell Tissue Res 390, 141–172 (2022). https://doi.org/10.1007/s00441-022-03667-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-022-03667-0

Keywords

Navigation