Skip to main content
Log in

Mechanically induced histochemical and structural damage in the annulus fibrosus and cartilaginous endplate: a multi-colour immunofluorescence analysis

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The annulus fibrosus (AF) and endplate (EP) are collagenous spine tissues that are frequently injured due to gradual mechanical overload. Macroscopic injuries to these tissues are typically a by-product of microdamage accumulation. Many existing histochemistry and biochemistry techniques are used to examine microdamage in the AF and EP; however, there are several limitations when used in isolation. Immunofluorescence may be sensitive to histochemical and structural damage and permits the simultaneous evaluation of multiple proteins—collagen I (COL I) and collagen II (COL II). This investigation characterized the histochemical and structural damage in initially healthy porcine spinal joints that were either unloaded (control) or loaded via biofidelic compression loading. The mean fluorescence area and mean fluorescence intensity of COL II significantly decreased (− 54.9 and − 44.8%, respectively) in the loaded AF (p ≤ 0.002), with no changes in COL I (p ≥ 0.471). In contrast, the EP displayed similar decreases in COL I and COL II fluorescence area (− 35.6 and − 37.7%, respectively) under loading conditions (p ≤ 0.027). A significant reduction (−31.1%) in mean fluorescence intensity was only observed for COL II (p = 0.043). The normalized area of pores was not altered on the endplate surface (p = 0.338), but a significant increase (+ 7.0%) in the void area was observed on the EP-subchondral bone interface (p = 0.002). Colocalization of COL I and COL II was minimal in all tissues (R < 0.34). In conclusion, the immunofluorescence analysis captured histochemical and structural damage in collagenous spine tissues, namely, the AF and EP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams MA (1995) Mechanical testing of the spine. An appraisal of methodology, results, and conclusions. Spine 20:2151–2156

    Article  CAS  PubMed  Google Scholar 

  • Adams MA, McMillan DW, Green TP, Dolan P (1996) Sustained loading generates stress concentrations in lumbar intervertebral discs. Spine (Phila Pa 1976) 21:434–438

  • Antoniou J, Goudsouzian NM, Heathfield TF, Winterbottom N, Steffen T, Poole AR, Aebi M, Alini M (1996) The human lumbar endplate. Evidence of changes in biosynthesis and denaturation of the extracellular matrix with growth, maturation, aging, and degeneration. Spine (Phila Pa 1976) 21:1153–1161

  • Beach TAC, Frost DM, Zehr JD, Howarth SJ, McGill SM, Callaghan JP (2019) Spine loading during laboratory-simulated fireground operations –inter-individual variation and method of load quantification. Ergonomics 62:1426–1438

    Article  PubMed  Google Scholar 

  • Berg-Johansen B, Fields AJ, Liebenberg EC, Li A, Lotz JC (2018a) Structure-fuction relationships at the human spinal disc-vertebra interface. J Orthop Res 36:192–201

    PubMed  Google Scholar 

  • Berg-Johansen B, Fields AJ, Liebenberg EC, Li A, Lotz JC (2018b) Structure-function relationships at the human spinal disc-vertebra interface. J Orthop Res 36:192–201

    PubMed  Google Scholar 

  • Callaghan JP, McGill SM (1995) Frozen storage increases the ultimate compressive load of porcine vertebrae. J Orthop Res 13:809–812

    Article  CAS  PubMed  Google Scholar 

  • Callaghan JP, McGill SM (2001) Intervertebral disc herniation: studies on a porcine model exposed to highly repetitive flexion/extension motion with compressive force. Clin Biomech 16:28–37

    Article  CAS  Google Scholar 

  • Capowski JJ, Kylstra JA, Freedman SF (1995) A numeric index based on spatial frequency for the tortuosity of retinal vessels and its application to plus disease in retinopathy of prematurity. Retina 15:490–500

    Article  CAS  PubMed  Google Scholar 

  • Carter DR, Hayes WC (1976) Fatigue life of compact bone I. Effects of stress amplitude, temperature and density. J Biomech 9:27–30

    Article  CAS  PubMed  Google Scholar 

  • Cheng SC, Jou IM, Chern TC, Wang PH, Chen WC (2004) The effect of normal saline irrigation at different temperatures on the surface of articular cartilage: an experimental study in the rat. Arthroscopy 20:55–61

    Article  PubMed  Google Scholar 

  • Dougherty G, Varro J (2000) A quantitative index for the measurement of the tortuosity of blood vessels. Med Eng Phys 22:567–574

    Article  CAS  PubMed  Google Scholar 

  • Fields AJ, Rodriguez D, Gary KN, Liebenberg EC, Lotz JC (2013) Influence of biochemical composition on endplate cartilage tensile properties in the human lumbar spine. J Orthop Res 32:245–252

    Article  PubMed  PubMed Central  Google Scholar 

  • Frost DM, Beach TA, Crosby I, McGill SM (2015) Firefighter injuries are not just a fireground problem. Work 52:835–842

    Article  CAS  PubMed  Google Scholar 

  • Galante JO (1967) Tensile properties of the human annulus fibrosus. Acta Orthopeadica Scandinavia Supplement 100:1–91

    Google Scholar 

  • Gallagher S, Marras WS, Litsky AS, Burr D (2006) An exploratory study of loading and morphometric factors associated with specific failure modes in fatigue testing of lumbar motion segments. Clin Biomech 21:228–234

    Article  Google Scholar 

  • Genaidy AM, Waly SM, Khalil TM, Hidalgo J (1993) Spinal compression tolerance limits for the design of manual material handling operations in the workplace. Ergonomics 36:415–434

    Article  CAS  PubMed  Google Scholar 

  • Ghanbarian B, Hunt AG, Ewing RP, Sahimi M (2013) Tortuosity in porous media: a critical review. Soil Sci Soc Am J 77:1461–1477

    Article  CAS  Google Scholar 

  • Gooyers CE, Beach TAC, Frost DM, Howarth SJ, Callaghan JP (2018) Identifying interactive effect of task demands in lifting on estimates of in vivo low back joint loads. Appl Ergon 67:203–210

    Article  PubMed  Google Scholar 

  • Gooyers CE, Callaghan JP (2015) Exploring interactions between force, repetition and posture on intervertebral disc height loss and bulging in isolated porcine cervical functional spinal units from sub-acute-failure magnitudes of cyclic compressive loading. J Biomech 48:3701–3708

    Article  PubMed  Google Scholar 

  • Gooyers CE, McMillan EM, Noguchi M, Quadrilatero J, Callaghan JP (2015) Characterizing the combined effects of force, repetition and posture on injury pathways and micro-structural damage in isolated functional spinal units from sub-acute-failure magnitudes of cyclic compressive loading. Clin Biomech 30:953–959

    Article  Google Scholar 

  • Grant JP, Oxland TR, Dvorak MF (2001) Mapping the structural properties of the lumbosacral vertebral endplates. Spine 20:115–1120

    Google Scholar 

  • Gunning JL, Callaghan JP, McGill SM (2001) Spinal posture and prior loading history modulate compressive strength and type of failure in the spine: a biomechanical study using a cervical porcine model. Clin Biomech 16:471–480

    Article  CAS  Google Scholar 

  • Hansson TH, Keller TS, Spengler DM (1987) Mechanical behavior of the human lumbar spine II. Fatigue strength during dynamic compressive loading. J Orthop Res 5:479–487

    Article  CAS  PubMed  Google Scholar 

  • Heneghan C (2002) Characterization of changes in blood vessel width and tortuosity in retinopathy of prematurity using image analysis. Med Image Anal 6:407–429

    Article  PubMed  Google Scholar 

  • Hollander AP, Heathfield TF, Liu JJ, Pidoux I, Roughley PJ, Mort JS, Poole AR (1996) Enhanced denaturation of the ?1(II) chains of type-II collagen in normal adult human intervertebral discs compared with femoral articular cartilage. J Orthop Res 14:61–66

    Article  CAS  PubMed  Google Scholar 

  • Huang B, Liu J, Wei X, Li S, Xiang Y, Wu H, Chen J, Zhao F (2021) Damage to the human lumbar cartilage endplate and its clinical implications. J Anat 238:338–348

    Article  CAS  PubMed  Google Scholar 

  • Jackson A, Gu W (2009) Transport properties of cartilaginous tissues. Curr Rheumatol Rev 5:40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kocaoglu B, Martin J, Wolf B, Karahan M, Amendola A (2011) The effect of irrigation solution at different temperatures on articular cartilage metabolism. Arthroscopy 27:526–531

    Article  PubMed  Google Scholar 

  • Lakstins K, Arnold L, Gunsch G, Flanigan D, Khan S, Gadde N, Jones B, Agarwal G, Purmessur D (2020a) Characterization of the human intervertebral disc cartilage endplate at the molecular, cell, and tissue levels. J Orthopaedic Res

  • Lakstins K, Arnold L, Gunsch G, Khan S, Moore S, Purmessur D (2020b) Characterization of bovine and canine animal model cartilage endplates and comparison to human cartilage endplate structure, matrix composition, and cell phenotype. JOR SPINE 3

  • Lambers FM, Bouman AR, Tkachenko EV, Keaveny TM, Hernandez CJ (2014) The effects of tensile-compressive loading mode and microarchitecture on microdamage in human vertebral cancellous bone. J Biomech 47:3605–3612

    Article  PubMed  PubMed Central  Google Scholar 

  • Marras WS, Knapik JJ, Ferguson SA (2009) Lumbar spine forces during manoeuvering of ceiling-based and floor-based patient transfer devices. Ergonomics 52:384–397

    Article  CAS  PubMed  Google Scholar 

  • Massarwa E, Aboudi J, Galbusera F, Wilke HJ, Haj-Ali R (2017) A nonlinear micromechanical model for progressive damage of vertebral trabecular bones. J Mech Mater Struct 12:407–424

    Article  Google Scholar 

  • Masuoka K, Michalek AJ, Maclean JJ, Stokes IAF, Iatridis JC (2007) Different effects of static versus cyclic compressive loading on rat intervertebral disc height and water loss in vitro. Spine 32:1974–1979

    Article  PubMed  PubMed Central  Google Scholar 

  • Mattei TA (2018) Rope jumping−induced traumatic compression fractures: the underestimated danger of repetitive axial load forces. World Neurosurgery 113:96–97

    Article  PubMed  Google Scholar 

  • McLain RF, Yerby SA, Moseley TA (2002) Comparative morphometry of L4 verebrae: comparison of large animal models for the human lumbar spine. Spine 27:200–206

    Article  Google Scholar 

  • McMillan DW, Garbutt G, Adams MA (1996) Effect of sustained loading on the water content of intervertebral discs: implications for disc metabolism. Ann Rheum Dis 55:880–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirzaali MJ, Libonati F, Ferrario D, Rinaudo L, Messina C, Ulivieri FM, Cesana BM (2018) Determinants of bone damage: an ex-vivo study on porcine vertebrae. PLoS ONE 13:e0202210

    Article  PubMed  PubMed Central  Google Scholar 

  • Nemati R, Rahbar Shahrouzi J, Alizadeh R (2020) A stochastic approach for predicting tortuosity in porous media via pore network modeling. Comput Geotech 120:103406

    Article  Google Scholar 

  • Norman RW, Wells RP, Naumann P, Frank J, Shannon H, Kerr M (1998) A comparison of peak vs. cumulative physical work exposure risk factors for the reporting of low back pain in the automotive industry. Clin Biomech 13:561–573

    Article  Google Scholar 

  • Noshchenko A, Atousa P, Patel VV, Burger EL, Baldini T, Lu Y (2013) Correlation of vertebral strength topography with 3-dimensional computed tomographic structure. Spine 38:339–349

    Article  PubMed  Google Scholar 

  • O’Callaghan P, Szarko M, Wang Y, Luo J (2018) Effects of bone damage on creep behaviours of human vertebral trabeculae. Bone 106:204–210

    Article  PubMed  Google Scholar 

  • Oda H, Matsuzaki H, Tokuhashi Y, Wakabayashi K, Uematsu Y, Iwahashi M (2004) Degeneration of intervertebral discs due to smoking: experimental assessment in a rat-smoking model. J Orthop Sci 9:135–141

    Article  CAS  PubMed  Google Scholar 

  • Paietta RC, Burger EL, Ferguson VL (2013) Mineralization and collagen orientation throughout aging at the vertebral endplate in the human lumbar spine. J Struct Biol 184:310–320

    Article  CAS  PubMed  Google Scholar 

  • Panjabi MM (1992) The stabilizing system of the spine: part I: function, dysfunction, adaptation, and enhancement. J Spinal Disord 5:383–390

    Article  CAS  PubMed  Google Scholar 

  • Parkinson RJ, Callaghan JP (2007) The role of load magnitude as a modifier of the cumulative load tolerance of porcine cervical spinal units: progress towards a force weighting approach. Theor Issues Ergon Sci 8:171–184

    Article  Google Scholar 

  • Parkinson RJ, Callaghan JP (2009) The role of dynamic flexion in spine injury is altered by increasing dynamic load magnitude. Clin Biomech 24:148–154

    Article  Google Scholar 

  • Parkinson RJ, Durkin JL, Callaghan JP (2005) Estimating the compressive strength of the porcine cervical spine: an examination of the utility of DXA. Spine 30:E492-498

    Article  PubMed  Google Scholar 

  • Prairie J, Plamondon A, Hegg-Deloye S, Larouche D, Corbeil P (2016) Biomechanical risk assessment during field loading of hydraulic stretchers into ambulances. Int J Ind Ergon 54:1–9

    Article  Google Scholar 

  • Purcell P, Tiernan S, McEvoy F, Morris S (2015) Strong similarities in the creep and damage behaviour of a synthetic bone model compared to human trabecular bone under compressive cyclic loading. J Mech Behav Biomed Mater 48:51–59

    Article  CAS  PubMed  Google Scholar 

  • Reiland S (1978) Growth and skeletal development of the pig. Acta Radiol Suppl 358:15–22

    CAS  PubMed  Google Scholar 

  • Roberts S, Menage J, Duance V, Wotton S, Ayad S (1991) Volvo Award in basic sciences. Collagen types around the cells of the intervertebral disc and cartilage end plate: an immunolocalization study. Spine (Phila Pa 1976) 16:1030–1038

  • Rodriguez AG, Rodriguez-Soto AE, Burghardt AJ, Berven S, Majumdar S, Lotz JC (2011) Morphology of the human vertebral endplate. J Orthop Res 30:280–287

    Article  PubMed  PubMed Central  Google Scholar 

  • Szabó A, Merks RMH (2017) Blood vessel tortuosity selects against evolution of aggressive tumor cells in confined tissue environments: a modeling approach. PLoS Comput Biol 13:e1005635

    Article  PubMed  PubMed Central  Google Scholar 

  • van Dieën JH, Dekkers JJ, Groen V, Toussiant HM, Meijer OG (2001) Within-subject variability in low back load in a repetitively performed, mildly constrained lifting task. Spine 26:1799–1804

    Article  PubMed  Google Scholar 

  • Wade KR, Robertson PA, Boroom ND (2011) A fresh look at the nucleus-endplate region: new evidence for significant structural integration. Eur Spine J 20:1225–1232

    Article  PubMed  PubMed Central  Google Scholar 

  • Waterman BR, Belmont PJ, Schoenfeld AJ (2012) Low back pain in the united states: incidence and risk factors for presentation in the emergency setting. The Spine Journal 12:63–70

    Article  PubMed  Google Scholar 

  • Wu Y, Cisewski C, Wegner N, Zhao S, Pellegrini D Jr, Slate EH, Yao H (2016) Region and strain-dependent diffusivities of glucose and lactate in healthy human cartilage endplate. J Biomech 49:2756–2762

    Article  PubMed  PubMed Central  Google Scholar 

  • Yingling VR, Callaghan JP, McGill SM (1999) The porcine cervical spine as a model of the human lumbar spine: an anatomical, geometric, and functional comparison. J Spinal Disord 12:415–423

    Article  CAS  PubMed  Google Scholar 

  • Zehr JD, Buchman-Pearle JM, Callaghan JP (2020) Joint fatigue-failure: a demonstration of viscoelastic responses to rate and frequency loading parameters using the porcine cervical spine. J Biomech 113:110081

    Article  PubMed  Google Scholar 

  • Zehr JD, Tennant LM, Callaghan JP (2019) Incorporating loading variability into in vitro injury analyses and its effect on cumulative compression tolerance in porcine cervical spine units. J Biomech 88:48–54

    Article  PubMed  Google Scholar 

Download references

Funding

This project was funded by the Natural Sciences and Engineering Research Council of Canada. JPC is further supported as the Canada Research Chair in Spine Biomechanics and Injury Prevention.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed experiments: All. Performed the experiments: JDZ and FAR. Analyzed the data: JDZ and FAR. Contributed reagents/materials/analysis tools: JPC and JQ. Wrote the paper: All.

Corresponding author

Correspondence to Joe Quadrilatero.

Ethics declarations

Ethics approval

Not applicable. All porcine tissue was sourced from an abattoir and was food grade; therefore, ethics approval for animal care was not required.

Consent to participate

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 187 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zehr, J.D., Rahman, F.A., Callaghan, J.P. et al. Mechanically induced histochemical and structural damage in the annulus fibrosus and cartilaginous endplate: a multi-colour immunofluorescence analysis. Cell Tissue Res 390, 59–70 (2022). https://doi.org/10.1007/s00441-022-03649-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-022-03649-2

Keywords

Navigation