Skip to main content

Advertisement

Log in

Novel animal model of soft tissue tumor due to aberrant hedgehog signaling activation in pericyte lineage

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Pericytes are pluripotent cells that enclose the endothelium of small blood vessels in the whole body. These cells are thought to play a limited role in vascular development and blood pressure regulation; however, current evidence from numerous studies suggests several significant biologic aspects of pericytes in animals. One viewpoint is that pericytes are also known as potential cellular origin of multiple soft tissue tumors. Experimental evidence of the cellular origin of pericytic tumors is still insufficient, however, and their molecular pathogenesis is poorly understood. Here, we used a conditional constitutively active Smoothened allele (Rosa-SmoM2) and Cre recombinase mice to activate hedgehog (Hh) signaling, exclusively in the monocyte/macrophage and osteoclast lineage (LysMcre) or in RANK expressing cells (RANKcre) that are recognized as osteoclast precursor cells. Mice conditionally expressing SmoM2 with LysMcre displayed no significant skeletal phenotype; surprisingly, however, RANKcre; Rosa-SmoM2 mice frequently developed progressive soft tissue tumors in regions of the leg. Genetic lineage tracing analysis uncovered a new domain of RANKcre-expressing cells in the skeletal muscle interstitial cells that display markers consistent with vascular pericytes. Neoplasms arising from these cells showed increased expression of Matrix metalloproteinases (MMPs) that are molecular indicators of malignancy. Moreover, the tumors displayed strong bone invasive potency associated with osteoclastic bone resorption. Thus, these findings provide a novel insight into tumor pathology: Hh signal activated-pericytes can be a potential cellular origin of multiple soft tissue tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3 
Fig. 4

Similar content being viewed by others

References

  • Antonescu CR, Agaram NP, Sung YS, Zhang L, Swanson D, Dickson BC (2018) A distinct malignant epithelioid neoplasm with GLI1 gene rearrangements, frequent S100 protein expression, and metastatic potential: expanding the spectrum of pathologic entities with ACTB/MALAT1/PTCH1-GLI1 fusions. Am J Surg Pathol 42:553–560

    Article  PubMed  PubMed Central  Google Scholar 

  • Armah HB, Parwani AV (2009) Perivascular epithelioid cell tumor. Arch Pathol Lab Med 133:648–654

    Article  PubMed  Google Scholar 

  • Armulik A, Genove G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21:193–215

    Article  CAS  PubMed  Google Scholar 

  • Cannonier SA, Gonzales CB, Ely K, Guelcher SA, Sterling JA (2016) Hedgehog and TGFbeta signaling converge on Gli2 to control bony invasion and bone destruction in oral squamous cell carcinoma. Oncotarget 7:76062–76075

    Article  PubMed  PubMed Central  Google Scholar 

  • Cannonier SA, Sterling JA (2015) The role of hedgehog signaling in tumor induced bone disease. Cancers (basel) 7:1658–1683

    Article  CAS  Google Scholar 

  • Caplan AI (2008) All MSCs are pericytes? Cell Stem Cell 3:229–230

    Article  CAS  PubMed  Google Scholar 

  • Chang L, Zhao D, Liu HB, Wang QS, Zhang P, Li CL, Du WZ, Wang HJ, Liu X, Zhang ZR, Jiang CL (2015) Activation of sonic hedgehog signaling enhances cell migration and invasion by induction of matrix metalloproteinase-2 and -9 via the phosphoinositide-3 kinase/AKT signaling pathway in glioblastoma. Mol Med Rep 12:6702–6710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clausen BE, Burkhardt C, Reith W, Renkawitz R, Forster I (1999) Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res 8:265–277

    Article  CAS  PubMed  Google Scholar 

  • Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Peault B (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313

    Article  CAS  PubMed  Google Scholar 

  • Dahlen A, Fletcher CD, Mertens F, Fletcher JA, Perez-Atayde AR, Hicks MJ, Debiec-Rychter M, Sciot R, Wejde J, Wedin R, Mandahl N, Panagopoulos I (2004) activation of the GLI oncogene through fusion with the beta-actin gene (ACTB) in a group of distinctive pericytic neoplasms: pericytoma with t(7;12). Am J Pathol 164:1645–1653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das S, Samant RS, Shevde LA (2011) Hedgehog signaling induced by breast cancer cells promotes osteoclastogenesis and osteolysis. J Biol Chem 286:9612–9622

    Article  CAS  PubMed  Google Scholar 

  • Das S, Samant RS, Shevde LA (2012) The hedgehog pathway conditions the bone microenvironment for osteolytic metastasis of breast cancer. Int J Breast Cancer 2012:298623

  • Dellavalle A, Sampaolesi M, Tonlorenzi R, Tagliafico E, Sacchetti B, Perani L, Innocenzi A, Galvez BG, Messina G, Morosetti R, Li S, Belicchi M, Peretti G, Chamberlain JS, Wright WE, Torrente Y, Ferrari S, Bianco P, Cossu G (2007) Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat Cell Biol 9:255–267

    Article  CAS  PubMed  Google Scholar 

  • Drummond CJ, Hanna JA, Garcia MR, Devine DJ, Heyrana AJ, Finkelstein D, Rehg JE, Hatley ME (2018) Hedgehog pathway drives fusion-negative rhabdomyosarcoma initiated from non-myogenic endothelial progenitors. Cancer Cell 33:108–124 e105

  • Farrington-Rock C, Crofts NJ, Doherty MJ, Ashton BA, Griffin-Jones C, Canfield AE (2004) Chondrogenic and adipogenic potential of microvascular pericytes. Circulation 110:2226–2232

    Article  CAS  PubMed  Google Scholar 

  • Feng X, Teitelbaum SL (2013) Osteoclasts: new insights. Bone Res 1:11–26

    Article  PubMed  Google Scholar 

  • Folpe AL, Fanburg-Smith JC, Miettinen M, Weiss SW (2001) Atypical and malignant glomus tumors: analysis of 52 cases, with a proposal for the reclassification of glomus tumors. Am J Surg Pathol 25:1–12

    Article  CAS  PubMed  Google Scholar 

  • Gailani MR, Stahle-Backdahl M, Leffell DJ, Glynn M, Zaphiropoulos PG, Pressman C, Unden AB, Dean M, Brash DE, Bale AE, Toftgard R (1996) The role of the human homologue of Drosophila patched in sporadic basal cell carcinomas. Nat Genet 14:78–81

    Article  CAS  PubMed  Google Scholar 

  • Hahn H, Wojnowski L, Specht K, Kappler R, Calzada-Wack J, Potter D, Zimmer A, Muller U, Samson E, Quintanilla-Martinez L, Zimmer A (2000) Patched target Igf2 is indispensable for the formation of medulloblastoma and rhabdomyosarcoma. J Biol Chem 275:28341–28344

    Article  CAS  PubMed  Google Scholar 

  • Haraguchi R, Kitazawa R, Mori K, Tachibana R, Kiyonari H, Imai Y, Abe T, Kitazawa S (2016) sFRP4-dependent Wnt signal modulation is critical for bone remodeling during postnatal development and age-related bone loss. Sci Rep 6:25198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haraguchi R, Kitazawa R, Murashima A, Yamada G, Kitazawa S (2017) Developmental contribution of Wnt-signal-responsive cells to mouse reproductive tract formation. Acta Histochem Cytochem 50:127–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haraguchi R, Kohara Y, Matsubayashi K, Kitazawa R, Kitazawa S (2020) New insights into the pathogenesis of diabetic nephropathy: proximal renal tubules are primary target of oxidative stress in diabetic kidney. Acta Histochem Cytochem 53:21–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatley ME, Tang W, Garcia MR, Finkelstein D, Millay DP, Liu N, Graff J, Galindo RL, Olson EN (2012) A mouse model of rhabdomyosarcoma originating from the adipocyte lineage. Cancer Cell 22:536–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honami T, Shimo T, Okui T, Kurio N, Hassan NM, Iwamoto M, Sasaki A (2012) Sonic hedgehog signaling promotes growth of oral squamous cell carcinoma cells associated with bone destruction. Oral Oncol 48:49–55

    Article  CAS  PubMed  Google Scholar 

  • Jeng KS, Chang CF, Lin SS (2020) Sonic hedgehog signaling in organogenesis, tumors, and tumor microenvironments. Int J Mol Sci 21:758

    Article  CAS  PubMed Central  Google Scholar 

  • Jeong J, Mao J, Tenzen T, Kottmann AH, McMahon AP (2004) Hedgehog signaling in the neural crest cells regulates the patterning and growth of facial primordia. Genes Dev 18:937–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawakami R, Nakagami H, Noma T, Ohmori K, Kohno M, Morishita R (2016) RANKL system in vascular and valve calcification with aging. Inflamm Regen 36:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Kobayashi N, Takahashi D, Takano S, Kimura S, Hase K (2019) The roles of Peyer’s patches and microfold cells in the gut immune system: relevance to autoimmune diseases. Front Immunol 10:2345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong JH, Siebold C, Rohatgi R (2019) Biochemical mechanisms of vertebrate hedgehog signaling. Development 146:dev166892

  • Kuo FY, Lin HC, Eng HL, Huang CC (2005) Sinonasal hemangiopericytoma-like tumor with true pericytic myoid differentiation: a clinicopathologic and immunohistochemical study of five cases. Head Neck 27:124–129

    Article  PubMed  Google Scholar 

  • Lam CW, Xie J, To KF, Ng HK, Lee KC, Yuen NW, Lim PL, Chan LY, Tong SF, McCormick F (1999) A frequent activated smoothened mutation in sporadic basal cell carcinomas. Oncogene 18:833–836

    Article  CAS  PubMed  Google Scholar 

  • Latroche C, Gitiaux C, Chretien F, Desguerre I, Mounier R, Chazaud B (2015) Skeletal muscle microvasculature: a highly dynamic lifeline. Physiology (Bethesda) 30:417–427

    CAS  Google Scholar 

  • Lee Y, Kawagoe R, Sasai K, Li Y, Russell HR, Curran T, McKinnon PJ (2007) Loss of suppressor-of-fused function promotes tumorigenesis. Oncogene 26:6442–6447

    Article  CAS  PubMed  Google Scholar 

  • Maeda K, Kobayashi Y, Udagawa N, Uehara S, Ishihara A, Mizoguchi T, Kikuchi Y, Takada I, Kato S, Kani S, Nishita M, Marumo K, Martin TJ, Minami Y, Takahashi N (2012) Wnt5a-Ror2 signaling between osteoblast-lineage cells and osteoclast precursors enhances osteoclastogenesis. Nat Med 18:405–412

    Article  CAS  PubMed  Google Scholar 

  • Mao J, Ligon KL, Rakhlin EY, Thayer SP, Bronson RT, Rowitch D, McMahon AP (2006) A novel somatic mouse model to survey tumorigenic potential applied to the hedgehog pathway. Cancer Res 66:10171–10178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mravic M, Asatrian G, Soo C, Lugassy C, Barnhill RL, Dry SM, Peault B, James AW (2014) From pericytes to perivascular tumours: correlation between pathology, stem cell biology, and tissue engineering. Int Orthop 38:1819–1824

    Article  PubMed  Google Scholar 

  • Ney JT, Fehm T, Juhasz-Boess I, Solomayer EF (2012) RANK, RANKL and OPG expression in breast cancer - influence on osseous metastasis. Geburtshilfe Frauenheilkd 72:385–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ono T, Hayashi M, Sasaki F, Nakashima T (2020) RANKL biology: bone metabolism, the immune system, and beyond. Inflamm Regen 40:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raleigh DR, Reiter JF (2019) Misactivation of hedgehog signaling causes inherited and sporadic cancers. J Clin Invest 129:465–475

    Article  PubMed  PubMed Central  Google Scholar 

  • Rao S, Cronin SJF, Sigl V, Penninger JM (2018) RANKL and RANK: from mammalian physiology to cancer treatment. Trends Cell Biol 28:213–223

    Article  CAS  PubMed  Google Scholar 

  • Raza A, Franklin MJ, Dudek AZ (2010) Pericytes and vessel maturation during tumor angiogenesis and metastasis. Am J Hematol 85:593–598

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro AL, Okamoto OK (2015) Combined effects of pericytes in the tumor microenvironment. Stem Cells Int 2015:868475

  • Sato K, Lee JW, Sakamoto K, Iimura T, Kayamori K, Yasuda H, Shindoh M, Ito M, Omura K, Yamaguchi A (2013) RANKL synthesized by both stromal cells and cancer cells plays a crucial role in osteoclastic bone resorption induced by oral cancer. Am J Pathol 182:1890–1899

    Article  CAS  PubMed  Google Scholar 

  • Shimo T, Matsumoto K, Takabatake K, Aoyama E, Takebe Y, Ibaragi S, Okui T, Kurio N, Takada H, Obata K, Pang P, Iwamoto M, Nagatsuka H, Sasaki A (2016) The role of sonic hedgehog signaling in osteoclastogenesis and jaw bone destruction. PLoS One 11:e0151731

  • Stratman AN, Malotte KM, Mahan RD, Davis MJ, Davis GE (2009) Pericyte recruitment during vasculogenic tube assembly stimulates endothelial basement membrane matrix formation. Blood 114:5091–5101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamayo-Orrego L, Charron F (2019) Recent advances in SHH medulloblastoma progression: tumor suppressor mechanisms and the tumor microenvironment. F1000Res 8:F1000 Faculty Rev-1823

  • Theunissen JW, de Sauvage FJ (2009) Paracrine hedgehog signaling in cancer. Cancer Res 69:6007–6010

    Article  CAS  PubMed  Google Scholar 

  • Tostar U, Malm CJ, Meis-Kindblom JM, Kindblom LG, Toftgard R, Unden AB (2006) Deregulation of the hedgehog signalling pathway: a possible role for the PTCH and SUFU genes in human rhabdomyoma and rhabdomyosarcoma development. J Pathol 208:17–25

    Article  CAS  PubMed  Google Scholar 

  • Varjosalo M, Taipale J (2008) Hedgehog: functions and mechanisms. Genes Dev 22:2454–2472

    Article  CAS  PubMed  Google Scholar 

  • Walsh MC, Choi Y (2021) Regulation of T cell-associated tissues and T cell activation by RANKL-RANK-OPG. J Bone Miner Metab 39:54–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Li F, Dang L, Liang C, Lu A, Zhang G (2020) RANKL/RANK system-based mechanism for breast cancer bone metastasis and related therapeutic strategies. Front Cell Dev Biol 8:76

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie J, Murone M, Luoh SM, Ryan A, Gu Q, Zhang C, Bonifas JM, Lam CW, Hynes M, Goddard A, Rosenthal A, Epstein EH Jr, de Sauvage FJ (1998) Activating smoothened mutations in sporadic basal-cell carcinoma. Nature 391:90–92

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto M, Shook NA, Kanisicak O, Yamamoto S, Wosczyna MN, Camp JR, Goldhamer DJ (2009) A multifunctional reporter mouse line for Cre- and FLP-dependent lineage analysis. Genesis 47:107–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasui R, Minatogawa T, Kanoh N, Nakata Y, Kubota A (2001) Nasal septal hemangiopericytoma-like tumor: a case report with an immunohistochemical study. Am J Rhinol 15:267–270

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Wang Y, Chen T, Zhang Y, Xu R, Wang W, Cheng M, Chen Q (2019) Aberrant activation of hedgehog signalling promotes cell migration and invasion via matrix metalloproteinase -7 in ovarian cancer cells. J Cancer 10:990–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zibat A, Missiaglia E, Rosenberger A, Pritchard-Jones K, Shipley J, Hahn H, Fulda S (2010) Activation of the hedgehog pathway confers a poor prognosis in embryonal and fusion gene-negative alveolar rhabdomyosarcoma. Oncogene 29:6323–6330

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Yasuhiro Kobayashi (Matsumoto Dental University) for RANKcre mice. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. We thank Y. Takaoka, M. Hashimoto, Y. Utsunomiya, K. Shimazu and A. Kondo for valuable assistance.

Funding

This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan (18K06832 to R.H. and 20H03458 to S. K.).

Author information

Authors and Affiliations

Authors

Contributions

R. H. designed the study, carried out most of the experiments, analyzed the data, supervised the project, and wrote the manuscript; R. H., R. K., Y. I., and S. K. contributed reagents/materials/analysis tools; Y. K. provided advice on the project; R. K. and S. K. provided financial support; all the authors reviewed the manuscript.

Corresponding author

Correspondence to Ryuma Haraguchi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2.3 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haraguchi, R., Kitazawa, R., Kohara, Y. et al. Novel animal model of soft tissue tumor due to aberrant hedgehog signaling activation in pericyte lineage. Cell Tissue Res 388, 63–73 (2022). https://doi.org/10.1007/s00441-022-03578-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-022-03578-0

Keywords

Navigation