Skip to main content

Advertisement

Log in

Hypoxia pretreatment improves the therapeutic potential of bone marrow mesenchymal stem cells in hindlimb ischemia via upregulation of NRG-1

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) are considered a promising treatment for ischemic diseases, but their use is limited due to poor survival after injection. Hypoxia can significantly enhance the survival of MSCs. This study aimed to investigate hypoxia pretreatment of bone marrow mesenchymal stem cells (BM-MSCs) in hindlimb ischemia (HI) and the underlying mechanism. The HI mouse model was established and human BM-MSCs were injected into ischemic skeletal muscles. The blood flow reperfusion and capillary density were measured. In vitro, human BM-MSC cells were treated with hypoxia. The expression of NRG-1 and associated angiogenic factors were measured after knockdown or overexpression of NRG-1. The conditioned medium (CdM) of BM-MSCs was prepared and co-cultured with human umbilical vein endothelial cells (HUVECs), and then, the proliferation, migration, and angiogenesis of HUVECs were detected. After hypoxia pretreatment, NRG-1 expression, clone formation, proliferation, and angiogenic factor secretion from BM-MSCs were increased, while knockdown of NRG-1 reversed these results. In normoxia condition, overexpression of NRG-1 enhanced above factors. Additionally, hypoxia pretreatment of BM-MSCs induced the proliferation and migration of HUVECs and angiogenesis. Moreover, the injection of hypoxia pretreatment of BM-MSCs improved blood reperfusion and capillary density in HI mice, while knockdown of NRG-1 reversed the effect. Furthermore, the PI3K inhibitor and activator reversed the effect of NRG-1 overexpression and knockdown on angiogenesis. We concludes that hypoxia pretreatment of BM-MSCs facilitates angiogenesis and alleviates HI injury via NRG-1/PI3K/AKT pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akyurekli C et al (2015) A systematic review of preclinical studies on the therapeutic potential of mesenchymal stromal cell-derived microvesicles. Stem Cell Rev Rep 11(1):150–160

    Article  CAS  PubMed  Google Scholar 

  • Boyette LB et al (2014) Human bone marrow-derived mesenchymal stem cells display enhanced clonogenicity but impaired differentiation with hypoxic preconditioning. Stem Cells Transl Med 3(2):241–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J et al (2018) Mesenchymal stem cells drive paclitaxel resistance in ErbB2/ErbB3-coexpressing breast cancer cells via paracrine of neuregulin 1. Biochem Biophys Res Commun 501(1):212–219

    Article  CAS  PubMed  Google Scholar 

  • Criqui MH et al (1992) Mortality over a period of 10 years in patients with peripheral arterial disease. N Engl J Med 326(6):381–386

    Article  CAS  PubMed  Google Scholar 

  • Deng Y et al (2016) Prostacyclin-producing human mesenchymal cells target H19 lncRNA to augment endogenous progenitor function in hindlimb ischaemia. Nat Commun 7:11276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deschepper M et al (2011) Survival and function of mesenchymal stem cells (MSCs) depend on glucose to overcome exposure to long-term, severe and continuous hypoxia. J Cell Mol Med 15(7):1505–1514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang SJ et al (2010) Neuregulin-1 preconditioning protects the heart against ischemia/reperfusion injury through a PI3K/Akt-dependent mechanism. Chin Med J (engl) 123(24):3597–3604

    CAS  Google Scholar 

  • Farber A, Eberhardt RT (2016) The current state of critical limb ischemia: a systematic review. JAMA Surg 151(11):1070–1077

    Article  PubMed  Google Scholar 

  • Foley TR, Waldo SW, Armstrong EJ (2016) Medical therapy in peripheral artery disease and critical limb ischemia. Curr Treat Options Cardiovasc Med 18(7):42

    Article  PubMed  Google Scholar 

  • Gangadaran P et al (2017) Extracellular vesicles from mesenchymal stem cells activates VEGF receptors and accelerates recovery of hindlimb ischemia. J Control Release 264:112–126

    Article  CAS  PubMed  Google Scholar 

  • Gui C et al (2018) Neuregulin-1 promotes myocardial angiogenesis in the rat model of diabetic cardiomyopathy. Cell Physiol Biochem 46(6):2325–2334

    Article  CAS  PubMed  Google Scholar 

  • Guma A et al (2010) Emerging role of neuregulin as a modulator of muscle metabolism. Am J Physiol Endocrinol Metab 298(4):E742–E750

    Article  CAS  PubMed  Google Scholar 

  • Guo WP et al (2010) Neuregulin-1 regulates the expression of Akt, Bcl-2, and Bad signaling after focal cerebral ischemia in rats. Biochem Cell Biol 88(4):649–654

    Article  CAS  PubMed  Google Scholar 

  • Han KH et al (2016) Enhancement of angiogenic effects by hypoxia-preconditioned human umbilical cord-derived mesenchymal stem cells in a mouse model of hindlimb ischemia. Cell Biol Int 40(1):27–35

    Article  CAS  PubMed  Google Scholar 

  • Hedhli N et al (2011) Endothelium-derived neuregulin protects the heart against ischemic injury. Circulation 123(20):2254–2262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hedhli N, Kalinowski A, S Russell K (2014) Cardiovascular effects of neuregulin-1/ErbB signaling: role in vascular signaling and angiogenesis. Curr Pharm Des 20(30):4899–4905

    Article  CAS  PubMed  Google Scholar 

  • Hedhli N, Russell KS (2010) Cytostatic drugs, neuregulin activation of erbB receptors, and angiogenesis. Curr Hypertens Rep 12(6):411–417

    Article  CAS  PubMed  Google Scholar 

  • Iwase T et al (2005) Comparison of angiogenic potency between mesenchymal stem cells and mononuclear cells in a rat model of hindlimb ischemia. Cardiovasc Res 66(3):543–551

    Article  CAS  PubMed  Google Scholar 

  • Jackson WM, Nesti LJ, Tuan RS (2012) Concise review: clinical translation of wound healing therapies based on mesenchymal stem cells. Stem Cells Transl Med 1(1):44–50

    Article  CAS  PubMed  Google Scholar 

  • Jie B et al (2012) Neuregulin-1 suppresses cardiomyocyte apoptosis by activating PI3K/Akt and inhibiting mitochondrial permeability transition pore. Mol Cell Biochem 370(1–2):35–43

    Article  CAS  PubMed  Google Scholar 

  • Jullien N et al (2012) Downregulation of ErbB3 by Wnt3a contributes to wnt-induced osteoblast differentiation in mesenchymal cells. J Cell Biochem 113(6):2047–2056

    Article  CAS  PubMed  Google Scholar 

  • Katare R et al (2013) Perivascular delivery of encapsulated mesenchymal stem cells improves postischemic angiogenesis via paracrine activation of VEGF-A. Arterioscler Thromb Vasc Biol 33(8):1872–1880

    Article  CAS  PubMed  Google Scholar 

  • Kwon HM et al (2014) Multiple paracrine factors secreted by mesenchymal stem cells contribute to angiogenesis. Vascul Pharmacol 63(1):19–28

    Article  CAS  PubMed  Google Scholar 

  • Lai RC et al (2010) Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res 4(3):214–222

    Article  CAS  PubMed  Google Scholar 

  • Leroux L et al (2010) Hypoxia preconditioned mesenchymal stem cells improve vascular and skeletal muscle fiber regeneration after ischemia through a Wnt4-dependent pathway. Mol Ther 18(8):1545–1552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X et al (2015) VEGF gene transfected umbilical cord mesenchymal stem cells transplantation improve the lower limb vascular lesions of diabetic rats. J Diabetes Complications 29(7):872–881

    Article  PubMed  Google Scholar 

  • Li Y et al (2007) Neuroprotection by neuregulin-1 in a rat model of permanent focal cerebral ischemia. Brain Res 1184:277–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lian Q et al (2010) Functional mesenchymal stem cells derived from human induced pluripotent stem cells attenuate limb ischemia in mice. Circulation 121(9):1113–1123

    Article  PubMed  Google Scholar 

  • Liang X et al (2019) Overexpression of ERBB4 rejuvenates aged mesenchymal stem cells and enhances angiogenesis via PI3K/AKT and MAPK/ERK pathways. FASEB J 33(3):4559–4570

    Article  CAS  PubMed  Google Scholar 

  • Liu J et al (2015) Hypoxia pretreatment of bone marrow mesenchymal stem cells facilitates angiogenesis by improving the function of endothelial cells in diabetic rats with lower ischemia. PLoS One 10(5):e0126715

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo G et al (2010) Promotion of cutaneous wound healing by local application of mesenchymal stem cells derived from human umbilical cord blood. Wound Repair Regen 18(5):506–513

    Article  PubMed  Google Scholar 

  • Mendes-Ferreira P et al (2013) Therapeutic potential of neuregulin-1 in cardiovascular disease. Drug Discov Today 18(17–18):836–842

    Article  CAS  PubMed  Google Scholar 

  • Shakeri H et al (2018) Neuregulin-1 attenuates stress-induced vascular senescence. Cardiovasc Res 114(7):1041–1051

    Article  CAS  PubMed  Google Scholar 

  • Van Pham P et al (2017) ETV-2 activated proliferation of endothelial cells and attenuated acute hindlimb ischemia in mice. In Vitro Cell Dev Biol Anim 53(7):616–625

    Article  PubMed  Google Scholar 

  • Wang LJ et al (2019) Efficacy evaluation and tracking of bone marrow stromal stem cells in a rat model of renal ischemia-reperfusion injury. Biomed Res Int 2019:9105768

    PubMed  PubMed Central  Google Scholar 

  • Wang Y et al (2017) Precise role of dermal fibroblasts on melanocyte pigmentation. J Dermatol Sci 88(2):159–166

    Article  CAS  PubMed  Google Scholar 

  • Wu C et al (2018) Expression and secretion of neuregulin-1 in cardiac microvascular endothelial cells treated with angiogenic factors. Exp Ther Med 15(4):3577–3581

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y et al (2007a) Bone marrow-derived stem cells in wound healing: a review. Wound Repair Regen 15(Suppl 1):S18-26

    Article  PubMed  Google Scholar 

  • Wu Y et al (2007b) Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 25(10):2648–2659

    Article  CAS  PubMed  Google Scholar 

  • Xiang Q et al (2017) Overexpression of Gremlin1 in mesenchymal stem cells improves hindlimb ischemia in mice by enhancing cell survival. J Cell Physiol 232(5):996–1007

    Article  CAS  PubMed  Google Scholar 

  • Xiao J et al (2012) Therapeutic effects of neuregulin-1 gene transduction in rats with myocardial infarction. Coron Artery Dis 23(7):460–468

    Article  PubMed  Google Scholar 

  • Zhang H et al (2008) Therapeutic angiogenesis of bone marrow mononuclear cells (MNCs) and peripheral blood MNCs: transplantation for ischemic hindlimb. Ann Vasc Surg 22(2):238–247

    Article  PubMed  Google Scholar 

  • Zhang P et al (2018) NRG1-Fc improves metabolic health via dual hepatic and central action. JCI Insight 3(5)

  • Zhang Y et al (2020) Adult mesenchymal stem cell ageing interplays with depressed mitochondrial Ndufs6. Cell Death Dis 11(12):1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu LP et al (2018) Hypoxia-elicited mesenchymal stem cell-derived exosomes facilitates cardiac repair through miR-125b-mediated prevention of cell death in myocardial infarction. Theranostics 8(22):6163–6177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by The Joint Construction Project of Medical Science and Technology of Henan Province of China (LHGJ20190857, LHGJ20190858).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qidong Yuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, X., Liang, B., Wang, H. et al. Hypoxia pretreatment improves the therapeutic potential of bone marrow mesenchymal stem cells in hindlimb ischemia via upregulation of NRG-1. Cell Tissue Res 388, 105–116 (2022). https://doi.org/10.1007/s00441-021-03562-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-021-03562-0

Keywords

Navigation