Skip to main content

Advertisement

Log in

Polarized M2 macrophages induced by mechanical stretching modulate bone regeneration of the craniofacial suture for midfacial hypoplasia treatment

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The underlying mechanism of the trans-sutural distraction osteogenesis (TSDO) technique as an effective treatment that improves the symptoms of midfacial hypoplasia syndromes is not clearly understood. Increasing findings in the orthopedics field indicate that macrophages are mechanically sensitive and their phenotypes can respond to mechanical cues. However, how macrophages respond to mechanical stretching and consequently influence osteoblast differentiation of suture-derived stem cells (SuSCs) remains unclear, particularly during the TSDO process. In the present study, we established a TSDO rat model to determine whether and how macrophages were polarized in response to stretching and consequently affected bone regeneration of the suture frontal edge. Notably, after performing immunofluorescence, RNA-sequencing, and micro-computed tomography, it was demonstrated that macrophages are first recruited by various chemokines factors and polarized to the M2 phenotype upon optimal stretching. The latter in turn regulates SuSC activity and facilitates bone regeneration in sutures. Moreover, when the activated M2 macrophages were suppressed by pharmacological manipulation, new bone microarchitecture could rarely be detected under mechanical stretching and the expansion of the sutures was clear. Additionally, macrophages achieved M2 polarization in response to the optimal mechanical stretching (10%, 0.5 Hz) and strongly facilitated SuSC osteogenic differentiation and human umbilical vein endothelial cell angiogenesis using an indirect co-culture system in vitro. Collectively, this study revealed the mechanical stimulation-immune response-bone regeneration axis and clarified at least in part how sutures achieve bone regeneration in response to mechanical force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams S, Wuescher LM, Worth R, Yildirim-Ayan E (2019) Mechano-immunomodulation: mechanoresponsive changes in macrophage activity and polarization. Ann Biomed Eng 47:2213–2231

    Article  PubMed  PubMed Central  Google Scholar 

  • Ballotta V, Driessen-Mol A, Bouten CV, Baaijens FP (2014) Strain-dependent modulation of macrophage polarization within scaffolds. Biomaterials 35:4919–4928

    Article  CAS  PubMed  Google Scholar 

  • Biswas SK, Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11:889–896

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Geng H, Liang W, Liang H, Wang Y, Kong J, Zhang J, Liang Y, Chen Z, Li J, Chang YN, Li J, Xing G, Xing G (2020) Modulated podosome patterning in osteoclasts by fullerenol nanoparticles disturbs the bone resorption for osteoporosis treatment. Nanoscale 12:9359–9365

    Article  CAS  PubMed  Google Scholar 

  • Chen SY, Yang X, Feng WL, Liao JF, Wang LN, Feng L, Lin YM, Ren Q, Zheng GG (2015) Organ-specific microenvironment modifies diverse functional and phenotypic characteristics of leukemia-associated macrophages in mouse T cell acute lymphoblastic leukemia. J Immunol 194:2919–2929

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Liu Y, Ding W, Shi J, Li S, Liu Y, Wu M, Wang H (2018) Mechanical stretch-induced osteogenic differentiation of human jaw bone marrow mesenchymal stem cells (hJBMMSCs) via inhibition of the NF-kappaB pathway. Cell Death Dis 9:207

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Bachhuka A, Han S, Wei F, Lu S, Visalakshan RM, Vasilev K, Xiao Y (2017) Tuning chemistry and topography of nanoengineered surfaces to manipulate immune response for bone regeneration applications. ACS Nano 11:4494–4506

    Article  CAS  PubMed  Google Scholar 

  • Cho SW, Soki FN, Koh AJ, Eber MR, Entezami P, Park SI, van Rooijen N, McCauley LK (2014) Osteal macrophages support physiologic skeletal remodeling and anabolic actions of parathyroid hormone in bone. Proc Natl Acad Sci U S A 111:1545–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu SY, Chou CH, Huang HD, Yen MH, Hong HC, Chao PH, Wang YH, Chen PY, Nian SX, Chen YR, Liou LY, Liu YC, Chen HM, Lin FM, Chang YT, Chen CC, Lee OK (2019) Mechanical stretch induces hair regeneration through the alternative activation of macrophages. Nat Commun 10:1524

    Article  PubMed  PubMed Central  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, Deans RJ, Keating A, Prockop DJ, Horwitz EM (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  • Duan R, Zhang Y, van Dijk L, Barbieri D, van den Beucken J, Yuan H, de Bruijn J (2021) Coupling between macrophage phenotype, angiogenesis and bone formation by calcium phosphates. Mater Sci Eng C Mater Biol Appl 122: 111948.

  • Garg K, Pullen NA, Oskeritzian CA, Ryan JJ, Bowlin GL (2013) Macrophage functional polarization (M1/M2) in response to varying fiber and pore dimensions of electrospun scaffolds. Biomaterials 34:4439–4451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K (2010) Development of monocytes, macrophages, and dendritic cells. Science 327:656–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gruden G, Setti G, Hayward A, Sugden D, Duggan S, Burt D, Buckingham RE, Gnudi L, Viberti G (2005) Mechanical stretch induces monocyte chemoattractant activity via an NF-kappaB-dependent monocyte chemoattractant protein-1-mediated pathway in human mesangial cells: inhibition by rosiglitazone. J Am Soc Nephrol 16:688–696

    Article  CAS  PubMed  Google Scholar 

  • Gu Q, Yang H, Shi Q (2017) Macrophages and bone inflammation. J Orthop Translat 10:86–93

    Article  PubMed  PubMed Central  Google Scholar 

  • Guihard P, Boutet MA, Brounais-Le Royer B, Gamblin AL, Amiaud J, Renaud A, Berreur M, Rédini F, Heymann D, Layrolle P, Blanchard F (2015) Oncostatin m, an inflammatory cytokine produced by macrophages, supports intramembranous bone healing in a mouse model of tibia injury. Am J Pathol 185:765–775

    Article  CAS  PubMed  Google Scholar 

  • Han YD, Bai Y, Yan XL, Ren J, Zeng Q, Li XD, Pei XT, Han Y (2018) Co-transplantation of exosomes derived from hypoxia-preconditioned adipose mesenchymal stem cells promotes neovascularization and graft survival in fat grafting. Biochem Biophys Res Commun 497:305–312

    Article  CAS  PubMed  Google Scholar 

  • Ikegame M, Ejiri S, Okamura H (2019) Expression of non-collagenous bone matrix proteins in osteoblasts stimulated by mechanical stretching in the cranial suture of neonatal mice. J Histochem Cytochem 67:107–116

    Article  CAS  PubMed  Google Scholar 

  • Jaggy M, Zhang P, Greiner AM, Autenrieth TJ, Nedashkivska V, Efremov AN, Blattner C, Bastmeyer M, Levkin PA (2015) Hierarchical micro-nano surface topography promotes long-term maintenance of undifferentiated mouse embryonic stem cells. Nano Lett 15:7146–7154

    Article  PubMed  Google Scholar 

  • James AW, Levi B, Xu Y, Carre AL, Longaker MT (2010) Retinoic acid enhances osteogenesis in cranial suture-derived mesenchymal cells: potential mechanisms of retinoid-induced craniosynostosis. Plast Reconstr Surg 125:1352–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juban G, Chazaud B (2017) Metabolic regulation of macrophages during tissue repair: insights from skeletal muscle regeneration. FEBS Lett 591:3007–3021

    Article  CAS  PubMed  Google Scholar 

  • Katebi N, Kolpakova-Hart E, Lin CY, Olsen BR (2012) The mouse palate and its cellular responses to midpalatal suture expansion forces. Orthod Craniofac Res 15:148–158

    Article  CAS  PubMed  Google Scholar 

  • Lacey DC, Simmons PJ, Graves SE, Hamilton JA (2009) Proinflammatory cytokines inhibit osteogenic differentiation from stem cells: implications for bone repair during inflammation. Osteoarthritis Cartilage 17:735–742

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Byun H, Madhurakkat Perikamana SK, Lee S, Shin H (2019) Current advances in immunomodulatory biomaterials for bone regeneration. Adv Healthc Mater 8: e1801106.

  • Li W, Zhao J, Wang J, Sun L, Xu H, Sun W, Pan Y, Wang H, Zhang WB (2020) ROCK-TAZ signaling axis regulates mechanical tension-induced osteogenic differentiation of rat cranial sagittal suture mesenchymal stem cells. J Cell Physiol 235:5972–5984

    Article  CAS  PubMed  Google Scholar 

  • Liang W, Ding P, Li G, Enhang Lu, Zhao Z (2021) Hydroxyapatite nanoparticles facilitate osteoblast differentiation and bone formation within sagittal suture during expansion in rats. Drug Des Dev Ther 15:905–917

    Article  Google Scholar 

  • Lin T, Pajarinen J, Nabeshima A, Lu L, Nathan K, Jamsen E, Yao Z, Goodman SB (2017) Preconditioning of murine mesenchymal stem cells synergistically enhanced immunomodulation and osteogenesis. Stem Cell Res Ther 8:277

    Article  PubMed  PubMed Central  Google Scholar 

  • Loi F, Cordova LA, Zhang R, Pajarinen J, Lin TH, Goodman SB, Yao Z (2016) The effects of immunomodulation by macrophage subsets on osteogenesis in vitro. Stem Cell Res Ther 7:15

    Article  PubMed  PubMed Central  Google Scholar 

  • Martino MM, Maruyama K, Kuhn GA, Satoh T, Takeuchi O, Müller R, Akira S (2016) Inhibition of IL-1R1/MyD88 signalling promotes mesenchymal stem cell-driven tissue regeneration. Nat Commun 7:11051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matheson LA, Fairbank NJ, Maksym GN, Paul Santerre J, Labow RS (2006a) Characterization of the flexcell uniflex cyclic strain culture system with U937 macrophage-like cells. Biomaterials 27:226–233

    Article  CAS  PubMed  Google Scholar 

  • Matheson LA, Maksym GN, Santerre JP, Labow RS (2006b) Cyclic biaxial strain affects U937 macrophage-like morphology and enzymatic activities. J Biomed Mater Res A 76:52–62

    Article  PubMed  Google Scholar 

  • Matheson LA, Maksym GN, Santerre JP, Labow RS (2006c) The functional response of U937 macrophage-like cells is modulated by extracellular matrix proteins and mechanical strain. Biochem Cell Biol 84:763–773

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto T, Delafontaine P, Schnetzer KJ, Tong BC, Nerem RM (1996) Effect of uniaxial, cyclic stretch on the morphology of monocytes/macrophages in culture. J Biomech Eng 118:420–422

    Article  CAS  PubMed  Google Scholar 

  • McWhorter FY, Wang T, Nguyen P, Chung T, Liu WF (2013) Modulation of macrophage phenotype by cell shape. Proc Natl Acad Sci U S A 110:17253–17258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McWhorter FY, Davis CT, Liu WF (2014) Physical and mechanical regulation of macrophage phenotype and function. Cell Mol Life Sci 72:1303–1316

    Article  PubMed  PubMed Central  Google Scholar 

  • Miyazaki H, Hayashi K (2001) Effects of cyclic strain on the morphology and phagocytosis of macrophages. Biomed Mater Eng 11:301–309

    CAS  PubMed  Google Scholar 

  • Morinobu M, Ishijima M, Rittling SR, Tsuji K, Yamamoto H, Nifuji A, Denhardt DT, Noda M (2003) Osteopontin expression in osteoblasts and osteocytes during bone formation under mechanical stress in the calvarial suture in vivo. J Bone Miner Res 18:1706–1715

    Article  CAS  PubMed  Google Scholar 

  • Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11:723–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pajarinen J, Lin T, Gibon E, Kohno Y, Maruyama M, Nathan K, Lu L, Yao Z, Goodman SB (2019) Mesenchymal stem cell-macrophage crosstalk and bone healing. Biomaterials 196:80–89

    Article  CAS  PubMed  Google Scholar 

  • Porter AG, Jänicke RU (1999) Emerging roles of caspase-3 in apoptosis. Cell Death Differ 6:99–104

    Article  CAS  PubMed  Google Scholar 

  • Pugin J, Dunn I, Jolliet P, Tassaux D, Magnenat JL, Nicod LP, Chevrolet JC (1998) Activation of human macrophages by mechanical ventilation in vitro. Am J Physiol 275:L1040–L1050

    CAS  PubMed  Google Scholar 

  • Sasaki A, Sugiyama H, Tanaka E, Sugiyama M (2002) Effects of sutural distraction osteogenesis applied to rat maxillary complex on craniofacial growth. J Oral Maxillofac Surg 60:667–675

    Article  PubMed  Google Scholar 

  • Shan S, Fang B, Zhang Y, Wang C, Zhou J, Niu C, Gao Y, Zhao D, He J, Wang J, Zhang X, Li Q (2019) Mechanical stretch promotes tumoricidal M1 polarization via the FAK/NF-kappaB signaling pathway. FASEB J 33:13254–13266

    Article  CAS  PubMed  Google Scholar 

  • Shi M, Xia L, Chen Z, Lv F, Zhu H, Wei F, Han S, Chang J, Xiao Y, Wu C (2017) Europium-doped mesoporous silica nanosphere as an immune-modulating osteogenesis/angiogenesis agent. Biomaterials 144:176–187

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Qu L, Zhu R, Li H, Xue Y, Liu X, Fan J, Fan H (2016) Effects of mechanical stretch on cell proliferation and matrix formation of mesenchymal stem cell and anterior cruciate ligament fibroblast. Stem Cells Int 2016:9842075

    Article  PubMed  PubMed Central  Google Scholar 

  • Takayanagi H (2007) Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol 7:292–304

    Article  CAS  PubMed  Google Scholar 

  • Takeshita N, Hasegawa M, Sasaki K, Seki D, Seiryu M, Miyashita S, Takano I, Oyanagi T, Miyajima Y, Takano-Yamamoto T (2017) In vivo expression and regulation of genes associated with vascularization during early response of sutures to tensile force. J Bone Miner Metab 35:40–51

    Article  PubMed  Google Scholar 

  • Timberlake AT, Jin SC, Nelson-Williams C, Wu R, Furey CG, Islam B, Haider S, Loring E, Galm A, Steinbacher DM, Larysz D, Staffenberg DA, Flores RL, Rodriguez ED, Boggon TJ, Persing JA, Lifton RP (2019) Mutations in TFAP2B and previously unimplicated genes of the BMP, Wnt, and hedgehog pathways in syndromic craniosynostosis. Proc Natl Acad Sci U S A 116:15116–15121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong H, Gao F, Yin J, Zhang X, Zhang C, Yin N, Zhao Z (2015a) Transsutural distraction osteogenesis applied to maxillary complex with new internalized distraction device: analysis of the feasibility and long-term osteogenesis outcome. J Craniofac Surg 26:402–407

    Article  PubMed  Google Scholar 

  • Tong H, Song T, Sun X, Yin N, Liu L, Wang X, Zhao Z (2019) Imaging study of midface growth with bone-borne trans-sutural distraction osteogenesis therapy in growing cleft lip and palate patients. Sci Rep 9:871

    Article  PubMed  PubMed Central  Google Scholar 

  • Tong H, Wang X, Song T, Gao F, Yin J, Li H, Sun X, Wang Y, Yin N, Zhao Z (2015b) Trans-sutural distraction osteogenesis for midfacial hypoplasia in growing patients with cleft lip and palate. Plast Reconstr Surg 136:144–155

    Article  CAS  PubMed  Google Scholar 

  • Wosik J, Chen W, Qin K, Ghobrial RM, Kubiak JZ, Kloc M (2018) Magnetic field changes macrophage phenotype. Biophys J 114:2001–2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu T, Chen G, Tian F, Liu HX (2017) Contribution of cranial neural crest cells to mouse skull development. Int J Dev Biol 61:495–503

    Article  CAS  PubMed  Google Scholar 

  • Xing Z, Lu C, Hu D, Yu YY, Wang X, Colnot C, Nakamura M, Wu Y, Miclau T, Marcucio RS (2010) Multiple roles for CCR2 during fracture healing. Dis Model Mech 3:451–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Malladi P, Chiou M, Longaker MT (2007) Isolation and characterization of posterofrontal/sagittal suture mesenchymal cells in vitro. Plast Reconstr Surg 119:819–829

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Feng W, Wang H, Wang L, Liu X, Wang R, Chen C, Yang X, Zhang D, Ren Q, Zheng G (2020) Monocyte-derived leukemia-associated macrophages facilitate extramedullary distribution of t-cell acute lymphoblastic leukemia cells. Cancer Res 80:3677–3691

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Feng W, Wang R, Yang F, Wang L, Chen S, Ru Y, Cheng T, Zheng G (2018) Repolarizing heterogeneous leukemia-associated macrophages with more M1 characteristics eliminates their pro-leukemic effects. Oncoimmunology 7: e1412910.

  • Yilmaz E, Mihci E, Nur B, M. Alper Ö, and Ş Taçoy, (2019) Recent advances in craniosynostosis. Pediatr Neurol 99:7–15

    Article  PubMed  Google Scholar 

  • Ying W, Cheruku PS, Bazer FW, Safe SH, Zhou B (2013) Investigation of macrophage polarization using bone marrow derived macrophages. J Vis Exp.

Download references

Acknowledgements

We thank International Science Editing for editing this manuscript.

Funding

This project was supported by the National Natural Science Funder of China (No. 81571925) and the Key Clinical Projects of Peking University Third Hospital (No. BYSY2018061).

Author information

Authors and Affiliations

Authors

Contributions

Wei Liang and Zhenmin Zhao designed the experiments, collected and analyzed the data, and wrote the manuscript. Pengbing Ding and Jiaying Qian designed the scheme and diagram, participated in the cell experiment, and analyzed the data. Enhang Lu and Guan Li reviewed and helped to improve our manuscript.

Corresponding author

Correspondence to Zhenmin Zhao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1743 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, W., Ding, P., Qian, J. et al. Polarized M2 macrophages induced by mechanical stretching modulate bone regeneration of the craniofacial suture for midfacial hypoplasia treatment. Cell Tissue Res 386, 585–603 (2021). https://doi.org/10.1007/s00441-021-03533-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-021-03533-5

Keywords

Navigation