Abstract
From a morphological point of view, placozoans are among the most simple free-living animals. This enigmatic phylum is critical for our understanding of the evolution of animals and their cell types. Their millimeter-sized, disc-like bodies consist of only three cell layers that are shaped by roughly seven major cell types. Placozoans lack muscle cells and neurons but are able to move using their ciliated lower surface and take up food in a highly coordinated manner. Intriguingly, the genome of Trichoplax adhaerens, the founding member of the enigmatic phylum, has disclosed a surprising level of genetic complexity. Moreover, recent molecular and functional investigations have uncovered a much larger, so-far hidden cell-type diversity. Here, we have extended the microanatomical characterization of a recently described placozoan species—Hoilungia hongkongensis. In H. hongkongensis, we recognized the established canonical three-layered placozoan body plan but also came across several morphologically distinct and potentially novel cell types, among them novel gland cells and “shiny spheres”-bearing cells at the upper epithelium. Thus, the diversity of cell types in placozoans is indeed higher than anticipated.
This is a preview of subscription content,
to check access.






Similar content being viewed by others
Data availability
The data that support the findings of this study are available on https://zenodo.org.
References
Arendt D (2020) The evolutionary assembly of neuronal machinery. Curr Biol 30(10):R603–R616
Arendt D, Musser JM, Baker CVH, Bergman A, Cepko C, Erwin DH, Pavlicev M, Schlosser G, Widder S, Laubichler MD, Wagner GP (2016) The origin and evolution of cell types. Nat Rev Genet 17(12):744–757
Armon S, Bull MS, Aranda-Diaz A, Prakash M (2018) Ultrafast epithelial contractions provide insights into contraction speed limits and tissue integrity. Proc Natl Acad Sci USA 115(44):E10333–E10341
Ball EE, Miller DJ (2010) Putting placozoans on the (phylogeographic) map. Mol Ecol 19(11):2181–2183
Behrendt G, Ruthmann A (1986) The cytoskeleton of the fiber cells of Trichoplax adhaerens (Placozoa). Zoomorphology 106(2):123130
Birchenough GM, Johansson ME, Gustafsson JK, Bergstrom JH, Hansson GC (2015) New developments in goblet cell mucus secretion and function. Mucosal Immunol 8(4):712–719
Buchholz K, Ruthmann A (1995) The mesenchyme-like layer of the fiber cells of Trichoplax adhaerens (Placozoa), a syncytium. Z Naturforsch C Biosci 50c:282–285
Caccia S, Casartelli M, Tettamanti G (2019) The amazing complexity of insect midgut cells: types, peculiarities, and functions. Cell Tissue Res 377(3):505–525
Driscoll T, Gillespie JJ, Nordberg EK, Azad AF, Sobral BW (2013) Bacterial DNA sifted from the Trichoplax adhaerens (Animalia: Placozoa) genome project reveals a putative rickettsial endosymbiont. Genome Biol Evol 5(4):621–645
Eitel M, Francis WR, Varoqueaux F, Daraspe J, Osigus HJ, Krebs S, Vargas S, Blum H, Williams GA, Schierwater B, Worheide G (2018) Comparative genomics and the nature of placozoan species. PLoS Biol 16(7):e2005359
Eitel M, Guidi L, Hadrys H, Balsamo M, Schierwater B (2011) New insights into placozoan sexual reproduction and development. PLoS ONE 6(5):e19639
Eitel M, Osigus HJ, DeSalle R, Schierwater B (2013) Global diversity of the Placozoa. PLoS ONE 8(4):e57131
Eitel M, Schierwater B (2010) The phylogeography of the Placozoa suggests a taxon-rich phylum in tropical and subtropical waters. Mol Ecol 19(11):2315–2327
Fortunato A, Aktipis A (2019) Social feeding behavior of Trichoplax adhaerens. Front Ecol Evol 7
Garbowski Tv (1903) Morphogenetische Studien : als Betrag zur Methodologie zoologischer Forschung
Grell KG (1971) Trichoplax adhaerens F.E. Schulze und die Entstehung der Metazoen. Naturwiss Rundschau 24:160–161
Grell K (1981) Trichoplax adhaerens and the origin of Metazoa. In: Lincei AdC (ed) Origine dei Grandi Phyla dei Metazoi, , eds. 1981. pp. . Accademia Nazionale dei Lincei, Convegno Intern., pp 101–127
Grell KG, Benwitz G (1971) Die Ultrastruktur von Trichoplax adhaerens F. E Schulze Cytobiologie 4:216–240
Grell KG, Benwitz G (1974) [Special connecting structures between fiber cells of Trichoplax adhaerens F. E. Schulze (author's transl)]. Z Naturforsch C Biosci 29(11–12):790
Grell KG, Benwitz G (1981) Additional investigations on the ultrastructure of Trichoplax adhaerens F.E. Schulze (Placozoa) Zoomorphology 98(1):47–67
Grell KG, Ruthmann A (1991) Placozoa. In: Harrison FW (ed) Microscopic anatomy of invertebrates. Wiley-Liss, New York, pp 13–27
Gruber-Vodicka HR, Leisch N, Kleiner M, Hinzke T, Liebeke M, McFall-Ngai M, Hadfield MG, Dubilier N (2019) Two intracellular and cell type-specific bacterial symbionts in the placozoan Trichoplax H2. Nat Microbiol 4(9):1465–1474
Guidi L, Eitel M, Cesarini E, Schierwater B, Balsamo M (2011) Ultrastructural analyses support different morphological lineages in the phylum Placozoa Grell, 1971. J Morphol 272(3):371–378
Heyland A, Croll R, Goodall S, Kranyak J, Wyeth R (2014) Trichoplax adhaerens, an enigmatic basal metazoan with potential. Methods Mol Biol 1128:45–61
Jackson AM, Buss LW (2009) Shiny spheres of placozoans (Trichoplax) function in anti-predator defense. Invertebr Biol 128(3):205–212
Jakob W, Sagasser S, Dellaporta S, Holland P, Kuhn K, Schierwater B (2004) The Trox-2 Hox/ParaHox gene of Trichoplax (Placozoa) marks an epithelial boundary. Dev Genes Evol 214(4):170–175
Kaelberer MM, Bohorquez DV (2018) The now and then of gut-brain signaling. Brain Res 1693(Pt B):192–196
Kamm K, Osigus HJ, Stadler PF, DeSalle R, Schierwater B (2018) Trichoplax genomes reveal profound admixture and suggest stable wild populations without bisexual reproduction. Sci Rep 8(1):11168
Kamm K, Osigus HJ, Stadler PF, DeSalle R, Schierwater B (2019) Genome analyses of a placozoan rickettsial endosymbiont show a combination of mutualistic and parasitic traits. Sci Rep 9(1):17561
Klinges JG, Rosales SM, McMinds R, Shaver EC, Shantz AA, Peters EC, Eitel M, Worheide G, Sharp KH, Burkepile DE, Silliman BR, Vega Thurber RL (2019) Phylogenetic, genomic, and biogeographic characterization of a novel and ubiquitous marine invertebrate-associated Rickettsiales parasite, Candidatus Aquarickettsia rohweri, gen. nov., sp. nov. ISME J 13(12):2938–2953
Knoop KA, Newberry RD (2018) Goblet cells: multifaceted players in immunity at mucosal surfaces. Mucosal Immunol 11(6):1551–1557
Laumer CE, Gruber-Vodicka H, Hadfield MG, Pearse VB, Riesgo A, Marioni JC, Giribet G (2018) Support for a clade of Placozoa and Cnidaria in genes with minimal compositional bias. Elife 7
Ma J, Rubin BK, Voynow JA (2018) Mucins, mucus, and goblet cells. Chest 154(1):169–176
Mayorova TD, Hammar K, Winters CA, Reese TS, Smith CL (2019) The ventral epithelium of Trichoplax adhaerens deploys in distinct patterns cells that secrete digestive enzymes, mucus or diverse neuropeptides. Biol Open 8(8)
Mayorova TD, Smith CL, Hammar K, Winters CA, Pivovarova NB, Aronova MA, Leapman RD, Reese TS (2018) Cells containing aragonite crystals mediate responses to gravity in Trichoplax adhaerens (Placozoa), an animal lacking neurons and synapses. PLoS ONE 13(1):e0190905
Miyazawa H, Osigus HJ, Rolfes S, Kamm K, Schierwater B, Nakano H (2020) Mitochondrial genome evolution of placozoans: gene rearrangements and repeat expansions. Genome Biol Evol
Miyazawa H, Yoshida MA, Tsuneki K, Furuya H (2012) Mitochondrial genome of a Japanese placozoan. Zoolog Sci 29(4):223–228
Moroz LL (2018) Neurosystematics and periodic system of neurons: model vs reference species at single-cell resolution. ACS Chem Neurosci 9(8):1884–1903
Moroz LL, Kocot KM, Citarella MR, Dosung S, Norekian TP, Povolotskaya IS, Grigorenko AP, Dailey C, Berezikov E, Buckley KM, Ptitsyn A, Reshetov D, Mukherjee K, Moroz TP, Bobkova Y, Yu F, Kapitonov VV, Jurka J, Bobkov YV, Swore JJ, Girardo DO, Fodor A, Gusev F, Sanford R, Bruders R, Kittler E, Mills CE, Rast JP, Derelle R, Solovyev VV, Kondrashov FA, Swalla BJ, Sweedler JV, Rogaev EI, Halanych KM, Kohn AB (2014) The ctenophore genome and the evolutionary origins of neural systems. Nature 510(7503):109–114
Moroz LL, Romanova DY, Kohn AB (2021) Neural versus alternative integrative systems: molecular insights into origins of neurotransmitters. Phil Trans R Soc B 376 (1821):20190762; https://doi.org/10.1098/rstb.2019.0762
Moroz LL, Romanova DY, Nikitin MA, Sohn D, Kohn AB, Neveu E, Varoqueaux F, Fasshauer D (2020a) The diversification and lineage-specific expansion of nitric oxide signaling in Placozoa: insights in the evolution of gaseous transmission. Sci Rep 10(1):13020
Moroz LL, Sohn D, Romanova DY, Kohn AB (2020b) Microchemical identification of enantiomers in early-branching animals: lineage-specific diversification in the usage of D-glutamate and D-aspartate. Biochem Biophys Res Commun 527(4):947–952
Nielsen C (2019) Early animal evolution: a morphologist’s view. R Soc Open Sci 6(7):190638
Nikitin M (2015) Bioinformatic prediction of Trichoplax adhaerens regulatory peptides. Gen Comp Endocrinol 212:145–155
Osigus HJ, Rolfes S, Herzog R, Kamm K, Schierwater B (2019) Polyplacotoma mediterranea is a new ramified placozoan species. Curr Biol 29(5):R148–R149
Pearse VB, Uehara T, Miller RL (1994) Birefringent granules in placozoans (Trichoplax adhaerens). Trans Am Microsc Soc 113:385–389
Pereira RT, Nebo C, de Paula NL, Fortes-Silva R, Cardoso R, de Oliveira I, Paulino RR, Drummond CD, Rosa PV (2020) Distribution of goblet and endocrine cells in the intestine: a comparative study in Amazonian freshwater Tambaqui and hybrid catfish. J Morphol 281(1):55–67
Rassat J, Ruthmann A (1979) Trichoplax adhaerens F.E. Schulze (Placozoa) in the scanning electron microscope. Zoomorphologie 72:59–72
Romanova DY (2019) Cell types diversity of H4 haplotype Placozoa sp. Marine Biological Journal 4(1):81–90
Romanova DY, Heyland A, Sohn D, Kohn AB, Fasshauer D, Varoqueaux F, Moroz LL (2020a) Glycine as a signaling molecule and chemoattractant in Trichoplax (Placozoa): insights into the early evolution of neurotransmitters. NeuroReport 31(6):490–497
Romanova DY, Smirnov IV, Nikitin MA, Kohn AB, Borman AI, Malyshev AY, Balaban PM, Moroz LL (2020b) Sodium action potentials in placozoa: insights into behavioral integration and evolution of nerveless animals. Biochem Biophys Res Commun 532(1):120–126
Ruthmann A, Behrendt G, Wahl R (1986) The ventral epithelium of Trichoplax adhaerens (Placozoa): Cytoskeletal structures, cell contacts and endocytosis. Zoomorphology 106:115–122
Schierwater B, DeSalle R (2018) Placozoa. Curr Biol 28(3):R97–R98
Schulze FE (1883) Trichoplax adhaerens, nov. gen., nov. spec. Zool Anz 6:92–97
Schulze FE (1891) Uber Trichoplax adhaerens Phys Abh Kgl Acad Wiss Berl,:1–23
Schwartz V (1984) Das radialpolare Differenzierungsmuster bei Trichoplax adhaerens F. E. Schulze (Placozoa) [The Radial Polar Pattern of Differentiation in Trichoplax adhaerens F. E. Schulze (Placozoa)]. Z Naturforsch, B J Chem Sci 39c:818–832
Sebe-Pedros A, Chomsky E, Pang K, Lara-Astiaso D, Gaiti F, Mukamel Z, Amit I, Hejnol A, Degnan BM, Tanay A (2018) Early metazoan cell type diversity and the evolution of multicellular gene regulation. Nat Ecol Evol 2(7):1176–1188
Senatore A, Reese TS, Smith CL (2017) Neuropeptidergic integration of behavior in Trichoplax adhaerens, an animal without synapses. J Exp Biol 220(Pt 18):3381–3390
Signorovitch AY, Dellaporta SL, Buss LW (2006) Caribbean placozoan phylogeography. Biol Bull 211(2):149–156
Smith CL, Mayorova TD (2019) Insights into the evolution of digestive systems from studies of Trichoplax adhaerens. Cell Tissue Res 377(3):353–367
Smith CL, Pivovarova N, Reese TS (2015) Coordinated feeding behavior in Trichoplax, an animal without synapses. PLoS ONE 10(9):e0136098
Smith CL, Reese TS (2016) Adherens junctions modulate diffusion between epithelial cells in Trichoplax adhaerens. Biol Bull 231(3):216–224
Smith CL, Reese TS, Govezensky T, Barrio RA (2019) Coherent directed movement toward food modeled in Trichoplax, a ciliated animal lacking a nervous system. Proc Natl Acad Sci U S A 116(18):8901–8908
Smith CL, Varoqueaux F, Kittelmann M, Azzam RN, Cooper B, Winters CA, Eitel M, Fasshauer D, Reese TS (2014) Novel cell types, neurosecretory cells, and body plan of the early-diverging metazoan Trichoplax adhaerens. Curr Biol 24(14):1565–1572
Specian RD, Oliver MG (1991) Functional biology of intestinal goblet cells. Am J Physiol 260(2 Pt 1):C183-193
Srivastava M, Begovic E, Chapman J, Putnam NH, Hellsten U, Kawashima T, Kuo A, Mitros T, Salamov A, Carpenter ML, Signorovitch AY, Moreno MA, Kamm K, Grimwood J, Schmutz J, Shapiro H, Grigoriev IV, Buss LW, Schierwater B, Dellaporta SL, Rokhsar DS (2008) The Trichoplax genome and the nature of placozoans. Nature 454(7207):955–960
Starunov VV (2019) The organization of musculature and the nervous system in the pygidial region of phyllodocid annelids. Zoomorphology 138(1):55–71
Syed T, Schierwater B (2002) Trichoplax adhaerens: Discovered as a missing link, forgotten as a hydrozoan, re-discovered as a key to metazoan evolution. Vie Milieu 52:177–187
Thiemann M, Ruthmann A (1990) Zoomorphology spherical forms of Trichoplax adhaerens (Placozoa). Zoomorphology 110(1):37–45
Varoqueaux F, Fasshauer D (2017) Getting nervous: An Evolutionary overhaul for communication. Annu Rev Genet 51:455–476
Varoqueaux F, Williams EA, Grandemange S, Truscello L, Kamm K, Schierwater B, Jekely G, Fasshauer D (2018) High cell diversity and complex peptidergic signaling Underlie placozoan behavior. Curr Biol 28(21):3495–3501 e3492
Voigt O, Collins AG, Pearse VB, Pearse JS, Ender A, Hadrys H, Schierwater B (2004) Placozoa—no longer a phylum of one. Curr Biol 14(22):R944-945
Wenderoth H (1986) Transepithelial cytophagy by Trichoplax adhaerens F.E. Schulze (Placozoa) feeding on yeast. Z Naturforsch, B J Chem Sci 41c:343–347
Wenderoth H (1994) Phycoerythrin: Release from cryptophycean algae and bilin storage by the primitive metazoon Trichoplax adhaerens (Placozoa) Zeitschrift für Naturforschung 49c(7–8):458–463
Whelan NV, Kocot KM, Moroz TP, Mukherjee K, Williams P, Paulay G, Moroz LL, Halanych KM (2017) Ctenophore relationships and their placement as the sister group to all other animals. Nat Ecol Evol 1(11):1737–1746
Zuccolotto-Arellano J, Cuervo-Gonzalez R (2020) Binary fission in Trichoplax is orthogonal to the subsequent division plane. Mech Dev 162:103608
Acknowledgements
We thank E. Bedoshvili, A. Miroliubov, and V. Starunov for their help in electron microscopy, sample preparation, and advice for SEM protocols.
Funding
This work was supported by the Human Frontiers Science Program (RGP0060/2017) and National Science Foundation (1146575, 1557923, 1548121, and 1645219) grants to L.L.M., Russian Ministry of Science and High Education (agreement 075-15-2020-801) grant to D.R., and the Swiss National Science Foundation (#31003A_182732) grant to D.F. The research reported in this publication was also supported in part by the National Institute of Neurological Disorders and Stroke of the National Institutes of Health under Award Number R01NS114491 (to L.L.M.). M. Eitel received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement no 764840.
Author information
Authors and Affiliations
Contributions
D.Y.R., F.V., D.F., and L.L.M. designed the study; D.Y.R., F.V., J.D., M.A.N., M.E., and L.L.M analyzed the data; D.Y.R., L.L.M, F.V., and D.F. wrote the paper; and all authors reviewed, commented on, and edited the manuscript.
Corresponding authors
Ethics declarations
Disclaimer
The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Romanova, D.Y., Varoqueaux, F., Daraspe, J. et al. Hidden cell diversity in Placozoa: ultrastructural insights from Hoilungia hongkongensis. Cell Tissue Res 385, 623–637 (2021). https://doi.org/10.1007/s00441-021-03459-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00441-021-03459-y