Skip to main content
Log in

Cul3 is required for normal development of the mammary gland

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Cullin 3 (Cul3) has recently been implicated in a multitude of different processes, including the oxidative stress response, autophagy, tumorigenesis, and differentiation. To investigate the role of Cul3 in mammary gland development, we created a mouse model system using Cre-lox targeting where Cul3 is specifically deleted from the mammary gland. Such MMTV-Cre Cul3Flx/Flx mice examined at 2 and 3 months of age show delays and defects in mammary gland development. Mammary ductal trees from Cul3-deficient mammary glands exhibit delayed forward growth through the mammary fat pad, dilation of the ducts, and abnormal morphology of some of the epithelial structures within the gland. Additionally, terminal end buds are larger and less plentiful in MMTV-Cre Cul3Flx/Flx mammary glands, and there is significantly less primary and secondary branching compared to control animals. In contrast, by 6 months of age, the mammary ductal tree has grown to fill the entire mammary fat pad in glands lacking Cul3. However, distorted epithelial structures and dilated ducts persist. MMTV-Cre Cul3Flx/Flx mothers are able to nourish their litters, but the process of involution is slightly delayed in mammary glands lacking Cul3. Therefore, we conclude that while Cul3 is not essential for mammary gland function, Cul3 is required for the mammary gland to proceed normally through development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

The data that support the findings of this study are available from the corresponding author (JDS), upon request.

Abbreviations

BrdU:

5′-Bromo-2′-deoxyuridine

Cul:

Cullin

ER:

Estrogen receptor

H&E:

Hematoxylin and eosin

IGF1:

Insulin-like growth factor 1

MATH:

Meprin and TRAF homology

MEF:

Mouse embryonic fibroblasts

MMTV:

Mouse mammary tumor virus

Msx2:

Msh homeobox 2

NRF2:

Nuclear factor erythroid 2-related factor 2

PR:

Progesterone receptor

SPOP:

Speckle-type BTB/POZ protein

TEB:

Terminal end bud

TGF-β:

Transforming growth factor beta

References

  • Anderica-Romero AC, Escobar L, Padilla-Flores T, Pedraza-Chaverri J (2014) Insights in cullin 3/WNK4 and its relationship to blood pressure regulation and electrolyte homeostasis. Cell Signal 26:1166–1172

    Article  CAS  PubMed  Google Scholar 

  • Bocchinfuso WP, Lindzey JK, Hewitt SC, Clark JA, Myers PH, Cooper R, Korach KS (2000) Induction of mammary gland development in estrogen receptor-alpha knockout mice. Endocrinology 141:2982–2994

    Article  CAS  PubMed  Google Scholar 

  • Chen HY, Liu CC, Chen RH (2016) Cul3-KLHL20 ubiquitin ligase: physiological functions, stress responses, and disease implications. Cell Div 11:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen Y, Yang Z, Meng M, Zhao Y, Dong N, Yan H, Liu L, Ding M, Peng HB, Shao F (2009) Cullin mediates degradation of RhoA through evolutionarily conserved BTB adaptors to control actin cytoskeleton structure and cell movement. Mol Cell 35:841–855

    Article  CAS  PubMed  Google Scholar 

  • Cheng J, Guo J, Wang Z, North BJ, Tao K, Dai X, Wei W (2018) Functional analysis of Cullin 3 E3 ligases in tumorigenesis. Biochim Biophys Acta Rev Cancer 1869:11–28

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Riedlinger G, Miyoshi K, Tang W, Li C, Deng CX, Robinson GW, Hennighausen L (2004) Inactivation of Stat5 in mouse mammary epithelium during pregnancy reveals distinct functions in cell proliferation, survival, and differentiation. Mol Cell Biol 24:8037–8047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cullinan SB, Gordan JD, Jin J, Harper JW, Diehl JA (2004) The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol Cell Biol 24:8477–8486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curtis Hewitt S, Couse JF, Korach KS (2000) Estrogen receptor transcription and transactivation: Estrogen receptor knockout mice: what their phenotypes reveal about mechanisms of estrogen action. Breast Cancer Res 2:345–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • da Silva Montenegro EM, Costa CS, Campos G, Scliar M, de Almeida TF, Zachi EC, Silva IMW, Chan AJS, Zarrei M, Lourenco NCV, Yamamoto GL, Scherer S, Passos-Bueno MR (2019) Meta-analyses support previous and novel autism candidate genes: outcomes of an unexplored Brazilian cohort. Autism Res

  • Dubiel W, Dubiel D, Wolf DA, Naumann M (2018) Cullin 3-based ubiquitin ligases as master regulators of mammalian cell differentiation. Trends Biochem Sci 43:95–107

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Manka D, Wagner KU, Khan SA (2007) Estrogen receptor-alpha expression in the mammary epithelium is required for ductal and alveolar morphogenesis in mice. Proc Natl Acad Sci USA 104:14718–14723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frech MS, Halama ED, Tilli MT, Singh B, Gunther EJ, Chodosh LA, Flaws JA, Furth PA (2005) Deregulated estrogen receptor alpha expression in mammary epithelial cells of transgenic mice results in the development of ductal carcinoma in situ. Can Res 65:681–685

    Article  CAS  Google Scholar 

  • Frendo-Cumbo S, Jaldin-Fincati JR, Coyaud E, Laurent EMN, Townsend LK, Tan JMJ, Xavier RJ, Pillon NJ, Raught B, Wright DC, Brumell JH, Klip A (2019) Deficiency of the autophagy gene ATG16L1 induces insulin resistance through KLHL9/KLHL13/CUL3-mediated IRS1 degradation. J Biol Chem 294:16172–16185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao K, Jin X, Tang Y, Ma J, Peng J, Yu L, Zhang P, Wang C (2015) Tumor suppressor SPOP mediates the proteasomal degradation of progesterone receptors (PRs) in breast cancer cells. Am J Cancer Res 5:3210–3220

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haslam SZ (1988) Cell to cell interactions and normal mammary gland function. J Dairy Sci 71:2843–2854

    Article  CAS  PubMed  Google Scholar 

  • Hens JR, Wysolmerski JJ (2005) Key stages of mammary gland development: molecular mechanisms involved in the formation of the embryonic mammary gland. Breast Cancer Res 7:220–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  CAS  PubMed  Google Scholar 

  • Kim EJ, Kim SH, Jin X, Jin X, Kim H (2017) KCTD2, an adaptor of Cullin3 E3 ubiquitin ligase, suppresses gliomagenesis by destabilizing c-Myc. Cell Death Differ 24:649–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kossatz U, Breuhahn K, Wolf B, Hardtke-Wolenski M, Wilkens L, Steinemann D, Singer S, Brass F, Kubicka S, Schlegelberger B, Schirmacher P, Manns MP, Singer JD, Malek NP (2010) The cyclin E regulator cullin 3 prevents mouse hepatic progenitor cells from becoming tumor-initiating cells. J Clin Investig 120:3820–3833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon JE, La M, Oh KH, Oh YM, Kim GR, Seol JH, Baek SH, Chiba T, Tanaka K, Bang OS, Joe CO, Chung CH (2006) BTB domain-containing speckle-type POZ protein (SPOP) serves as an adaptor of Daxx for ubiquitination by Cul3-based ubiquitin ligase. J Biol Chem 281:12664–12672

    Article  CAS  PubMed  Google Scholar 

  • Li G, Ci W, Karmakar S, Chen K, Dhar R, Fan Z, Guo Z, Zhang J, Ke Y, Wang L, Zhuang M, Hu S, Li X, Zhou L, Li X, Calabrese MF, Watson ER, Prasad SM, Rinker-Schaeffer C, Eggener SE, Stricker T, Tian Y, Schulman BA, Liu J, White KP (2014) SPOP promotes tumorigenesis by acting as a key regulatory hub in kidney cancer. Cancer Cell 25:455–468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li L, Zhang W, Liu Y, Liu X, Cai L, Kang J, Zhang Y, Chen W, Dong C, Zhang Y (2020) The CRL3 BTBD9 E3 ubiquitin ligase complex targets TNFAIP1 for degradation to suppress cancer cell migration. Signal Transduct Target Ther 5:1–9

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu P, Ewald AJ, Martin GR, Werb Z (2008) Genetic mosaic analysis reveals FGF receptor 2 function in terminal end buds during mammary gland branching morphogenesis. Dev Biol 321:77–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyons WR (1958) Hormonal synergism in mammary growth. Proc R Soc Lond B Biol Sci 149:303–325

    Article  CAS  PubMed  Google Scholar 

  • Macias H, Hinck L (2012) Mammary gland development. Wiley Interdiscip Rev Dev Biol 1:533–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McEvoy JD, Kossatz U, Malek N, Singer JD (2007) Constitutive turnover of cyclin E by Cul3 maintains quiescence. Mol Cell Biol 27:3651–3666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minella AC, Loeb KR, Knecht A, Welcker M, Varnum-Finney BJ, Bernstein ID, Roberts JM, Clurman BE (2008) Cyclin E phosphorylation regulates cell proliferation in hematopoietic and epithelial lineages in vivo. Genes Dev 22:1677–1689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morandell J, Schwarz LA, Basilico B, Tasciyan S, Dimchev G, Nicolas A, Sommer C, Kreuzinger C, Dotter CP, Knaus LS (2020) Cul3 regulates cytoskeleton protein homeostasis and cell migration during a critical window of brain development. NEURON-D-20–00158

  • Morreale FE, Walden H (2016) Types of ubiquitin ligases. Cell 165:248-248.e241

    Article  CAS  PubMed  Google Scholar 

  • Ou CY, Lin YF, Chen YJ, Chien CT (2002) Distinct protein degradation mechanisms mediated by Cul1 and Cul3 controlling Ci stability in Drosophila eye development. Genes Dev 16:2403–2414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierce DF Jr, Johnson MD, Matsui Y, Robinson SD, Gold LI, Purchio AF, Daniel CW, Hogan BL, Moses HL (1993) Inhibition of mammary duct development but not alveolar outgrowth during pregnancy in transgenic mice expressing active TGF-beta 1. Genes Dev 7:2308–2317

    Article  CAS  PubMed  Google Scholar 

  • Robinson GW, Hennighausen L (2011) MMTV-Cre transgenes can adversely affect lactation: considerations for conditional gene deletion in mammary tissue. Anal Biochem 412:92–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh K, Ginsburg E, Vonderhaar BK (2004) Msx-1 and Msx-2 in mammary gland development. J Mammary Gland Biol Neoplasia 9:195–205

    Article  PubMed  Google Scholar 

  • Silberstein GB, Daniel CW (1982) Glycosaminoglycans in the basal lamina and extracellular matrix of the developing mouse mammary duct. Dev Biol 90:215–222

    Article  CAS  PubMed  Google Scholar 

  • Singer JD, Gurian-West M, Clurman B, Roberts JM (1999) Cullin-3 targets cyclin E for ubiquitination and controls S phase in mammalian cells. Genes Dev 13:2375–2387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sternlicht MD (2006) Key stages in mammary gland development: the cues that regulate ductal branching morphogenesis. Breast Cancer Res 8:201

    Article  PubMed  CAS  Google Scholar 

  • Strange R, Li F, Saurer S, Burkhardt A, Friis RR (1992) Apoptotic cell death and tissue remodelling during mouse mammary gland involution. Development (Cambridge, England) 115:49–58

    Article  CAS  Google Scholar 

  • Sumara I, Quadroni M, Frei C, Olma MH, Sumara G, Ricci R, Peter M (2007) A cul3-based e3 ligase removes aurora B from mitotic chromosomes, regulating mitotic progression and completion of cytokinesis in human cells. Dev Cell 12:887–900

    Article  CAS  PubMed  Google Scholar 

  • Uruno A, Furusawa Y, Yagishita Y, Fukutomi T, Muramatsu H, Negishi T, Sugawara A, Kensler TW, Yamamoto M (2013) The Keap1-Nrf2 system prevents onset of diabetes mellitus. Mol Cell Biol 33:2996–3010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner KU, McAllister K, Ward T, Davis B, Wiseman R, Hennighausen L (2001) Spatial and temporal expression of the Cre gene under the control of the MMTV-LTR in different lines of transgenic mice. Transgenic Res 10:545–553

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Counterman LJ, Haslam SZ (1990) Progesterone action in normal mouse mammary gland. Endocrinology 127:2183–2189

    Article  CAS  PubMed  Google Scholar 

  • Williams JM, Daniel CW (1983) Mammary ductal elongation: differentiation of myoepithelium and basal lamina during branching morphogenesis. Dev Biol 97:274–290

    Article  CAS  PubMed  Google Scholar 

  • Xu G, Mo L, Wu C, Shen X, Dong H, Yu L, Pan P, Pan K (2019) The miR-15a-5p-XIST-CUL3 regulatory axis is important for sepsis-induced acute kidney injury. Ren Fail 41:955–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yaghjyan L, Colditz GA (2011) Estrogens in the breast tissue: a systematic review. Cancer Causes Control 22:529–540

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang P, Gao K, Jin X, Ma J, Peng J, Wumaier R, Tang Y, Zhang Y, An J, Yan Q, Dong Y, Huang H, Yu L, Wang C (2015a) Endometrial cancer-associated mutants of SPOP are defective in regulating estrogen receptor-alpha protein turnover. Cell Death Dis 6:e1687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Yu S, Tan Y, Fu J-J (2015b) New insights into the function of Cullin 3 in trophoblast invasion and migration.

Download references

Funding

Research was supported by grants from National Institutes of Health (US)-Grant number RO1GM082940 to Jeffrey D. Singer and from Susan G. Komen-Award number BCTR0503636 to Jeffrey D. Singer.

Author information

Authors and Affiliations

Authors

Contributions

JDS conceived the work. CMC collected and analyzed the data. CMC wrote the manuscript, and JDS provided critical revision of the article. Both authors reviewed the final manuscript.

Corresponding author

Correspondence to Jeffrey D. Singer.

Ethics declarations

Ethics approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution at which the studies were conducted.

Consent for publication

The authors affirm that this article has not been previously published elsewhere, and the manuscript is not under consideration for publication in another journal. Both authors consent to the publication of the manuscript should the article be accepted.

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 836 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cummings, C.M., Singer, J.D. Cul3 is required for normal development of the mammary gland. Cell Tissue Res 385, 49–63 (2021). https://doi.org/10.1007/s00441-021-03456-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-021-03456-1

Keywords

Navigation