Skip to main content

Advertisement

Log in

Specific substrates composed of collagen and fibronectin support the formation of epithelial cell sheets by MDCK cells lacking α-catenin or classical cadherins

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The effect of the extracellular matrix substrates on the formation of epithelial cell sheets was studied using MDCK cells in which the α-catenin gene was disrupted. Although the mutant cells did not form an epithelial cell sheet in conventional cell culture, the cells formed an epithelial cell sheet when they were cultured on or in a collagen gel; the same results were not observed when cells were cultured on collagen-coated cover glasses or culture dishes. Moreover, the cells cultured on the cell culture inserts coated with fibronectin, Matrigel, or vitronectin formed epithelial cell sheets, whereas the cells cultured on cover glasses coated with these proteins did not form the structure, implying that the physical and chemical features of the substrates exert a profound effect on the formation of epithelial cell sheets. MDCK cells lacking the expression of E- and K-cadherins displayed similar properties. When the mutant MDCK cells were cultured in the presence of blebbistatin, they formed epithelial cell sheets, suggesting that myosin II was involved in the formation of these sheets. These cell sheets showed intimate cell–cell adhesion, and electron microscopy confirmed the formation of cell junctions. We propose that specific ECM substrates organize the formation of basic epithelial cell sheets, whereas classical cadherins stabilize cell–cell contacts and promote the formation of structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ECM:

Extracellular matrix

MDCK:

Madin-Darby canine kidney

TBS:

Tris-buffered saline

TPA:

12-O-tetradecanoylphorbol-13-acetate

DIC:

Differential interference contrast microscopy

SD:

Standard deviation

References

  • Ali IU, Mautner V, Lanza R, Hynes RO (1977) Restoration of normal morphology, adhesion and cytoskeleton in transformed cells by addition of a transformation-sensitive surface protein. Cell 11:115–126

    Article  CAS  PubMed  Google Scholar 

  • Angst BD, Marcozzi C, Magee AI (2001) The cadherin superfamily: diversity in form and function. J Cell Sci 114:629–641

    Article  CAS  PubMed  Google Scholar 

  • Asakura T, Nakanishi H, Sakisaka T, Takahashi K, Mandai K, Nishimura M, Sasaki T, Takai Y (1999) Similar and differential behaviour between the nectin-afadin-ponsin and cadherin-catenin systems during the formation and disruption of the polarized junctional alignment in epithelial cells. Genes Cells 4:573–581

    Article  CAS  PubMed  Google Scholar 

  • Bae S, Park J, Kim J-S (2014) Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30:1473–1475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao Q, Hughes RC (1995) Galectin-3 expression and effects on cyst enlargement and tubulogenesis in kidney epithelial MDCK cells cultured in three-dimensional matrices in vitro. J Cell Sci 108:2791–2800

    Article  CAS  PubMed  Google Scholar 

  • Breen E, Clarke A, Steele G Jr, Mercurio AM (1993) Poorly differentiated colon carcinoma cell lines deficient in alpha-catenin expression express high levels of surface E-cadherin but lack Ca(2+)-dependent cell-cell adhesion. Cell Adhes Commun 1:239–250

    Article  CAS  PubMed  Google Scholar 

  • Byers SW, Hadley MA, Djakiew D, Dym M (1986) Growth and characterization of polarized monolayers of epididymal epithelial cells and Sertoli cells in dual environment culture chambers. J Androl 7:59–68

    Article  CAS  PubMed  Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook JR, Crute BE, Patrone LM, Gabriels J, Lane ME, van Buskirk RG (1989) Microporosity of the substratum regulates differentiation of MDCK cells in vitro. In Vitro Cell Dev Biol 2:914–922

    Article  Google Scholar 

  • Costa M, Raich W, Agbunag C, Leung B, Hardin J, Priess JR (1998) A putative catenin-cadherin system mediates morphogenesis of the Caenorhabditis elegans embryo. J Cell Biol 141:297–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daley WP, Yamada KM (2013) ECM-modulated cellular dynamics as a driving force for tissue morphogenesis. Curr Opin Genet Dev 23:408–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dzamba BJ, DeSimone DW (2018) Extracellular matrix (ECM) and the sculpting of embryonic tissues. Curr Top Dev Biol 130:245–274

    Article  CAS  PubMed  Google Scholar 

  • Enemchukwu NO, Cruz-Acuña R, Bongiorno T, Johnson CT, García JR, Sulchek T, García AJ (2016) Synthetic matrices reveal contributions of ECM biophysical and biochemical properties to epithelial morphogenesis. J Cell Biol 212:113–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frantz C, Stewart KM, Weaver VM (2010) The extracellular matrix at a glance. J Cell Sci 123:4195–4200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujiwara M, Nagatomo A, Tsuda M, Obata S, Sakuma T, Yamamoto T, Suzuki ST (2015) Desmocollin-2 alone forms functional desmosomal plaques, with the plaque formation requiring the juxtamembrane region and plakophilins. J Biochem 158:339–353

    Article  CAS  PubMed  Google Scholar 

  • Gjorevski N, Sachs N, Manfrin A, Giger S, Bragina ME, Ordóñez-Morán P, Clevers H, Lutolf MP (2016) Designer matrices for intestinal stem cell and organoid culture. Nature 539:560–564

    Article  CAS  PubMed  Google Scholar 

  • Guo WH, Frey MT, Burnham NA, Wang YL (2006) Substrate rigidity regulates the formation and maintenance of tissues. Biophys J 90:2213–2220

    Article  CAS  PubMed  Google Scholar 

  • Halbleib JM, Nelson WJ (2006) Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev 20:3199–3214

    Article  CAS  PubMed  Google Scholar 

  • Hall HG, Farson DA, Bissell MJ (1982) Lumen formation by epithelial cell lines in response to collagen overlay: a morphogenetic model in culture. Proc Natl Acad Sci USA 79:4672–4676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris TJ, Tepass U (2010) Adherens junctions: from molecules to morphogenesis. Nat Rev Mol Cell Biol 11:502–514

    Article  CAS  PubMed  Google Scholar 

  • Hirano S, Kimoto N, Shimoyama Y, Hirohashi S, Takeichi M (1992) Identification of a neural alpha-catenin as a key regulator of cadherin function and multicellular organization. Cell 70:293–301

    Article  CAS  PubMed  Google Scholar 

  • Hirano S, Yan Q, Suzuki ST (1999) Expression of a novel protocadherin, OL-protocadherin, in a subset of functional systems of the developing mouse brain. J Neurosci 19:995–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holloway EM, Capeling MM, Spence J (2019) Biologically inspired approaches to enhance human organoid complexity. Development 146:1–13

    Article  CAS  Google Scholar 

  • Humphries JD, Byron A, Humphries MJ (2006) Integrin ligands at a glance. J Cell Sci 119:3901–3903

    Article  CAS  PubMed  Google Scholar 

  • Hynes RO (2009) The extracellular matrix: not just pretty fibrils. Science 326:1216–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayadev R, Sherwood DR (2017) Basement membranes. Curr Biol 27:R207–R211

    Article  CAS  PubMed  Google Scholar 

  • Kleinman HK, Martin GR (2005) Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol 15:378–386

    Article  CAS  PubMed  Google Scholar 

  • Larue L, Ohsugi M, Hirchenhain J, Kemler R (1994) E-cadherin null mutant embryos fail to form a trophectoderm epithelium. Proc Natl Acad Sci USA 91:8263–8267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Patel VV, Kostetskii I, Xiong Y, Chu AF, Jacobson JT, Yu C, Morley GE, Molkentin JD, Radice GL (2005) Cardiac-specific loss of N-cadherin leads to alteration in connexins with conduction slowing and arrhythmogenesis. Circ Res 97:474–481

    Article  CAS  PubMed  Google Scholar 

  • Maartens AP, Brown NH (2015) Anchors and signals: the diverse roles of integrins in development. Curr Top Dev Biol 112:233–272

    Article  CAS  PubMed  Google Scholar 

  • Mandai K, Nakanishi H, Satoh A, Obaishi H, Wada M, Nishioka H, Itoh M, Mizoguchi A, Aoki T, Fujimoto T, Matsuda Y, Tsukita S, Takai Y (1997) Afadin: a novel actin filament-binding protein with one PDZ domain localized at cadherin-based cell-to-cell adherens junction. J Cell Biol 139:517–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manninen A (2015) Epithelial polarity–generating and integrating signals from the ECM with integrins. Exp Cell Res 334:337–349

    Article  CAS  PubMed  Google Scholar 

  • Matte BF, Kumar A, Placone JK, Zanella VG, Martins MD, Engler AJ, Lamers ML (2019) Matrix stiffness mechanically conditions EMT and migratory behavior of oral squamous cell carcinoma. J Cell Sci 132:1–10

    Google Scholar 

  • Meng WY, Mushika Y, Ichii T, Takeichi M (2008) Anchorage of microtubule minus ends to adherens junctions regulates epithelial cell-cell contacts. Cell 135:948–959

    Article  CAS  PubMed  Google Scholar 

  • Mui KL, Chen CS, Assoian RK (2016) The mechanical regulation of integrin-cadherin crosstalk organizes cells, signaling and forces. J Cell Sci 129:1093–1100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagafuchi A, Ishihara S, Tsukita S (1994) The roles of catenins in the cadherin-mediated cell adhesion: functional analysis of E-cadherin-alpha catenin fusion molecules. J Cell Biol 127:235–245

    Article  CAS  PubMed  Google Scholar 

  • Nagafuchi A, Takeichi M (1988) Cell binding function of E-cadherin is regulated by the cytoplasmic domain. EMBO J 7:3679–3684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obata S, Usukura S (1992) Morphogenesis of photoreceptor outer segment during postnatal development in the mouse (BALB/c) retina. Cell Tissue Res 269:39–48

    Article  CAS  PubMed  Google Scholar 

  • Ochiai A, Akimoto S, Shimoyama Y, Nagafuchi A, Tsukita S, Hirohashi S (1994) Frequent loss of alpha catenin expression in scirrhous carcinomas with scattered cell growth. Jpn J Cancer Res 85:266–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oda H, Takeichi M (2011) Evolution: structural and functional diversity of cadherin at the adherens junction. J Cell Biol 193:1137–1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohsugi M, Larue L, Schwarz H, Kemler R (1997) Cell-junctional and cytoskeletal organization in mouse blastocysts lacking E-cadherin. Dev Biol 185:261–271

    Article  CAS  PubMed  Google Scholar 

  • Orkin RW, Gehron P, McGoodwin EB, Martin GR, Valentine T, Swarm R (1977) A murine tumor producing a matrix of basement membrane. J Exp Med 145:204–220

    Article  CAS  PubMed  Google Scholar 

  • Ozawa M, Baribault H, Kemler R (1989) The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. EMBO J 8:1711–1717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Priest AV, Shafraz O, Sivasankar S (2017) Biophysical basis of cadherin mediated cell-cell adhesion. Exp Cell Res 358:10–13

    Article  CAS  PubMed  Google Scholar 

  • Rahikkala M, Sormunen R, Eskelinen S (2001) Effects of src kinase and TGFbeta1 on the differentiation and morphogenesis of MDCK cells grown in three-dimensional collagen and Matrigel environments. J Pathol 195:391–400

    Article  CAS  PubMed  Google Scholar 

  • Reynolds AB, Reynolds AB, Daniel J, McCrea PD, Wheelock MJ, Wu J, Zhang Z (1994) Identification of a new catenin: the tyrosine kinase substrate p120cas associates with E-cadherin complexes. Mol Cell Biol 14:8333–8342

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reber S, Mechtersheimer J, Nasif S, Benitez JA, Colombo M, Domanski M, Jutzi D, Hedlund E, Ruepp MD (2018) CRISPR-Trap: a clean approach for the generation of gene knockouts and gene replacements in human cells. Mol Biol Cell 29:75–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savage CR Jr, Bonney RJ (1978) Extended expression of differentiated function in primary cultures of adult liver parenchymal cells maintained on nitrocellulose filters. I. Induction of phosphoenolpyruvate carboxykinase and tyrosine aminotransferase. Exp Cell Res 114:307–315

    Article  CAS  PubMed  Google Scholar 

  • Simian M, Bissell MJ (2016) Organoids: a historical perspective of thinking in three dimensions. J Cell Biol 216:31–40

    Article  PubMed  CAS  Google Scholar 

  • Takayama K, Mitani S, Nagamoto Y, Sakurai F, Tachibana M, Taniguchi Y, Sekiguchi K, Mizuguchi H (2016) Laminin 411 and 511 promote the cholangiocyte differentiation of human induced pluripotent stem cells. Biochem Biophys Res Commun 474:91–96

    Article  CAS  PubMed  Google Scholar 

  • Thomason HA, Scothern A, McHarg S, Garrod DR (2010) Desmosomes: adhesive strength and signalling in health and disease. Biochem J 429:419–433

    Article  CAS  PubMed  Google Scholar 

  • Troxell ML, Loftus DJ, Nelson WJ, Marrs JA (2001) Mutant cadherin affects epithelial morphogenesis and invasion, but not transformation. J Cell Sci 114:1237–1246

    Article  CAS  PubMed  Google Scholar 

  • van Hengel J, Gohon L, Bruyneel E, Vermeulen S, Cornelissen M, Mareel M, von Roy F (1997) Protein kinase C activation upregulates intercellular adhesion of alpha-catenin-negative human colon cancer cell variants via induction of desmosomes. J Cell Biol 137:1103–1116

    Article  PubMed  PubMed Central  Google Scholar 

  • Watabe-Uchida M, Uchida N, Imamura Y, Nagafuchi A, Fujimoto K, Uemura T, Vermeulen S, van Roy F, Adamson ED, Takeichi M (1998) Alpha-Catenin-vinculin interaction functions to organize the apical junctional complex in epithelial cells. J Cell Biol 142:847–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber GF, Bjerke MA, DeSimone DW (2011) Integrins and cadherins join forces to form adhesive networks. J Cell Sci 124:1183–1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada S, Pokutta S, Drees F, Weis WI, Nelson WJ (2005) Deconstructing the cadherin-catenin-actin complex. Cell 123:889–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yonemura S, Wada Y, Watanabe T, Nagafuchi A, Shibata M (2010) Alpha-Catenin as a tension transducer that induces adherens junction development. Nat Cell Biol 12:533–542

    Article  CAS  PubMed  Google Scholar 

  • Yurchenco PD (2011) Basement membranes: cell scaffoldings and signaling platforms. Cold Spring Harb Perspect Biol 3:a004911

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mr. K. Kitayama and Mr. M. Yamaguchi for their technical assistance. We also thank Dr. K. Sekiguchi (Osaka University) for his valuable comments on this study. Human α-catenin cDNA was kindly provided by Dr. M. Ozawa (Kagoshima University).

Funding

This study was supported in part by Grants-in-Aid for Scientific Research from the Japan Society for Science Promotion (18K06230 to SH and 17K00981 to SO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shintaro T. Suzuki.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, S.T., Obata, S., Fujiwara, M. et al. Specific substrates composed of collagen and fibronectin support the formation of epithelial cell sheets by MDCK cells lacking α-catenin or classical cadherins. Cell Tissue Res 385, 127–148 (2021). https://doi.org/10.1007/s00441-021-03448-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-021-03448-1

Keywords

Navigation