Skip to main content

Advertisement

Log in

Cellular and subcellular localization of endogenous phospholipase D6 in seminiferous tubules of mouse testes

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Phospholipase D6 (PLD6) plays pivotal roles in mitochondrial dynamics and spermatogenesis, but the cellular and subcellular localization of endogenous PLD6 in testis germ cells is poorly defined. We examined the distribution and subcellular localization of PLD6 in mouse testes using validated specific anti-PLD6 antibodies. Ectopically expressed PLD6 protein was detected in the mitochondria of PLD6-transfected cells, but endogenous PLD6 expression in mouse testes was localized to the perinuclear region of pachytene spermatocytes, and more prominently, to the round (Golgi and cap phases) and elongating spermatids (acrosomal phase); these results suggest that PLD6 is localized to the Golgi apparatus. The distribution of PLD6 in the round spermatids partially overlapped with that of the cis-Golgi marker GM130, indicating that the PLD6 expression corresponded to the GM130-positive subdomains of the Golgi apparatus. Correlative light and electron microscopy revealed that PLD6 expression in developing spermatids was localized almost exclusively to several flattened cisternae, and these structures might correspond to the medial Golgi subcompartment; neither the trans-Golgi networks nor the developing acrosomal system expressed PLD6. Further, we observed that PLD6 interacted with tesmin, a testis-specific transcript necessary for successful spermatogenesis in mouse testes. To our knowledge, these results provide the first evidence of PLD6 as a Golgi-localized protein of pachytene spermatocytes and developing spermatids and suggest that its subcompartment-specific distribution within the Golgi apparatus may be related to the specific functions of this organelle during spermatogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adachi Y, Itoh K, Yamada T, Cerveny KL, Suzuki TL, Macdonald P, Frohman MA, Ramachandran R, Iijima M, Sesaki H (2016) Coincident phosphatidic acid interaction restrains Drp1 in mitochondrial division. Mol Cell 63:1034–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahn BH, Min G, Bae YS, Bae YS, Min DS (2006) Phospholipase D is activated and phosphorylated by casein kinase-II in human U87 astroglioma cells. Exp Mol Med 38:55–62

    Article  CAS  PubMed  Google Scholar 

  • Alam MS, Kurohmaru M (2014) Disruption of Sertoli cell vimentin filaments in prepubertal rats: an acute effect of butylparaben in vivo and in vitro. Acta Histochem 116:682–687

    Article  CAS  PubMed  Google Scholar 

  • Aravin AA, Chan DC (2011) piRNAs meet mitochondria. Dev Cell 20:287–288

    Article  CAS  PubMed  Google Scholar 

  • Au CE, Hermo L, Byrne E, Smirle J, Fazel A, Simon PH, Kearney RE, Cameron PH, Smith CE, Vali H, Fernandez-Rodriguez J, Ma K, Nilsson T, Bergeron JJ (2015) Expression, sorting, and segregation of Golgi proteins during germ cell differentiation in the testis. Mol Biol Cell 26:4015–4032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baba T, Kashiwagi Y, Arimitsu N, Kogure T, Edo A, Maruyama T, Nakao K, Nakanishi H, Kinoshita M, Frohman MA, Yamamoto A, Tani K (2014) Phosphatidic acid (PA)-preferring phospholipase A1 regulates mitochondrial dynamics. J Biol Chem 289:11497–11511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernardino RL, Alves MG, Oliveira PF (2018) Evaluation of the purity of Sertoli cell primary cultures. Methods Mol Biol 1748:9–15

    Article  CAS  PubMed  Google Scholar 

  • Braschi E, McBride HM (2010) Mitochondria and the culture of the Borg: understanding the integration of mitochondrial function within the reticulum, the cell, and the organism. BioEssays 32:958–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Chan DC (2010) Physiological functions of mitochondrial fusion. Ann N Y Acad Sci 1201:21–25

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Liang P, Huang Y, Li M, Zhang X, Ding C, Feng J, Zhang Z, Zhang X, Gao Y, Zhang Q, Cao S, Zheng H, Liu D, Songyang Z, Huang J (2017) Glycerol kinase-like proteins cooperate with Pld6 in regulating sperm mitochondrial sheath formation and male fertility. Cell Discov 3:17030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi SY, Huang P, Jenkins GM, Chan DC, Schiller J, Frohman MA (2006) A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis. Nat Cell Biol 8:1255–1262

    Article  CAS  PubMed  Google Scholar 

  • Clermont Y, Lalli M, Rambourg A (1981) Ultrastructural localization of nicotinamide adenine dinucleotide phosphatase (NADPase), thiamine pyrophosphatase (TPPase), and cytidine monophosphatase (CMPase) in the Golgi apparatus of early spermatids of the rat. Anat Rec 201:613–622

    Article  CAS  PubMed  Google Scholar 

  • Clermont Y, Rambourg A, Hermo L (1994) Connections between the various elements of the cis- and mid-compartments of the Golgi apparatus of early rat spermatids. Anat Rec 240:469–480

    Article  CAS  PubMed  Google Scholar 

  • Clermont Y, Tang XM (1985) Glycoprotein synthesis in the Golgi apparatus of spermatids during spermiogenesis of the rat. Anat Rec 213:33–43

    Article  CAS  PubMed  Google Scholar 

  • Dunphy WG, Rothman JE (1985) Compartmental organization of the Golgi stack. Cell 42:13–21

    Article  CAS  PubMed  Google Scholar 

  • Gao Q, Frohman MA (2012) Roles for the lipid-signaling enzyme MitoPLD in mitochondrial dynamics, piRNA biogenesis, and spermatogenesis. BMB Rep 45:7–13

    Article  CAS  PubMed  Google Scholar 

  • Guraya SS (1987) Biology of spermatogenesis and spermatozoa in mammals. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  • Hermo L, Pelletier RM, Cyr DG, Smith CE (2010) Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 2: changes in spermatid organelles associated with development of spermatozoa. Microsc Res Tech 73:279–319

    Article  CAS  PubMed  Google Scholar 

  • Hermo L, Rambourg A, Clermont Y (1980) Three-dimensional architecture of the cortical region of the Golgi apparatus in rat spermatids. Am J Anat 157:357–373

    Article  CAS  PubMed  Google Scholar 

  • Hess RA, Renato de Franca L (2008) Spermatogenesis and cycle of the seminiferous epithelium. Adv Exp Med Biol 636:1–15

    PubMed  Google Scholar 

  • Ho HC, Tang CY, Suarez SS (1999) Three-dimensional structure of the Golgi apparatus in mouse spermatids: a scanning electron microscopic study. Anat Rec 256:189–194

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Frohman MA (2009) Lipid signaling on the mitochondrial surface. Biochim Biophys Acta 1791:839–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang H, Gao Q, Peng X, Choi SY, Sarma K, Ren H, Morris AJ, Frohman MA (2011) piRNA-associated germline nuage formation and spermatogenesis require MitoPLD profusogenic mitochondrial-surface lipid signaling. Dev Cell 20:376–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang DW, Lee SW, Hwang WC, Lee BH, Choi YS, Suh YA, Choi KY, Min DS (2017) Phospholipase D1 acts through Akt/TopBP1 and RB1 to regulate the E2F1-dependent apoptotic program in cancer cells. Cancer Res 77:142–152

    Article  CAS  PubMed  Google Scholar 

  • Marra P, Maffucci T, Daniele T, Tullio GD, Ikehara Y, Chan EK, Luini A, Beznoussenko G, Mironov A, De Matteis MA (2001) The GM130 and GRASP65 Golgi proteins cycle through and define a subdomain of the intermediate compartment. Nat Cell Biol 3:1101–1113

    Article  CAS  PubMed  Google Scholar 

  • Nakamura N, Rabouille C, Watson R, Nilsson T, Hui N, Slusarewicz P, Kreis TE, Warren G (1995) Characterization of a cis-Golgi matrix protein, GM130. J Cell Biol 131:1715–1726

    Article  CAS  PubMed  Google Scholar 

  • Oji A, Isotani A, Fujihara Y, Castaneda JM, Oura S, Ikawa M (2020) Tesmin, metallothionein-like 5, is required for spermatogenesis in mice†. Biol Reprod 102:975–983

    Article  PubMed  PubMed Central  Google Scholar 

  • Rabouille C, Hui N, Hunte F, Kieckbusch R, Berger EG, Warren G, Nilsson T (1995) Mapping the distribution of Golgi enzymes involved in the construction of complex oligosaccharides. J Cell Sci 108(Pt 4):1617–1627

    Article  CAS  PubMed  Google Scholar 

  • Riew TR, Choi JH, Kim HL, Jin X, Lee MY (2018) PDGFR-beta-positive perivascular adventitial cells expressing nestin contribute to fibrotic scar formation in the striatum of 3-NP intoxicated rats. Front Mol Neurosci 11:402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiavon CR, Turn RE, Newman LE, Kahn RA (2019) ELMOD2 regulates mitochondrial fusion in a mitofusin-dependent manner, downstream of ARL2. Mol Biol Cell 30:1198–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suarez-Quian CA, An Q, Jelesoff N, Dym M (1991) The Golgi apparatus of rat pachytene spermatocytes during spermatogenesis. Anat Rec 229:16–26

    Article  CAS  PubMed  Google Scholar 

  • Sugihara T, Wadhwa R, Kaul SC, Mitsui Y (1999) A novel testis-specific metallothionein-like protein, tesmin, is an early marker of male germ cell differentiation. Genomics 57:130–136

    Article  CAS  PubMed  Google Scholar 

  • Susi FR, Leblond CP, Clermont Y (1971) Changes in the golgi apparatus during spermiogenesis in the rat. Am J Anat 130:251–267

    Article  CAS  PubMed  Google Scholar 

  • Sutou S, Miwa K, Matsuura T, Kawasaki Y, Ohinata Y, Mitsui Y (2003) Native tesmin is a 60-kilodalton protein that undergoes dynamic changes in its localization during spermatogenesis in mice. Biol Reprod 68:1861–1869

    Article  CAS  PubMed  Google Scholar 

  • Thorne-Tjomsland G, Clermont Y, Tang XM (1991) Glucose-6-phosphatase activity of endoplasmic reticulum and Golgi apparatus in spermatocytes and spermatids of the rat: an electron microscopic cytochemical study. Biol Cell 71:33–41

    Article  CAS  PubMed  Google Scholar 

  • Toshimori K (2009) Dynamics of the mammalian sperm head: modifications and maturation events from spermatogenesis to egg activation. Adv Anat Embryol Cell Biol 204:5–94

    PubMed  Google Scholar 

  • von Eyss B, Jaenicke LA, Kortlever RM, Royla N, Wiese KE, Letschert S, McDuffus LA, Sauer M, Rosenwald A, Evan GI, Kempa S, Eilers M (2015) A MYC-driven change in mitochondrial dynamics limits YAP/TAZ function in mammary epithelial cells and breast cancer. Cancer Cell 28:743–757

    Article  CAS  Google Scholar 

  • Watanabe T, Chuma S, Yamamoto Y, Kuramochi-Miyagawa S, Totoki Y, Toyoda A, Hoki Y, Fujiyama A, Shibata T, Sado T, Noce T, Nakano T, Nakatsuji N, Lin H, Sasaki H (2011) MITOPLD is a mitochondrial protein essential for nuage formation and piRNA biogenesis in the mouse germline. Dev Cell 20:364–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao N, Kam C, Shen C, Jin W, Wang J, Lee KM, Jiang L, Xia J (2009) PICK1 deficiency causes male infertility in mice by disrupting acrosome formation. J Clin Invest 119:802–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao R, Ito C, Natsume Y, Sugitani Y, Yamanaka H, Kuretake S, Yanagida K, Sato A, Toshimori K, Noda T (2002) Lack of acrosome formation in mice lacking a Golgi protein, GOPC. Proc Natl Acad Sci USA 99:11211–11216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang P, Qin Y, Zheng Y, Zeng W (2018) Phospholipase D family member 6 is a surface marker for enrichment of undifferentiated spermatogonia in prepubertal boars. Stem Cells Dev 27:55–64

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Y, Liu X, Bai J, Tian X, Zhao X, Liu W, Duan X, Shang W, Fan HY, Tong C (2016) Mitoguardin regulates mitochondrial fusion through MitoPLD and is required for neuronal homeostasis. Mol Cell 61:111–124

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Guo Y, Zheng B, Shao B, Jiang M, Wang G, Zhou T, Wang L, Zhou Z, Guo X, Huang X (2015) Establishment of a proteome profile and identification of molecular markers for mouse spermatogonial stem cells. J Cell Mol Med 19:521–534

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded by grants from the National Research Foundation of Korea (NRF) (grant numbers: NRF-2018R1A2B3002179 and NRF-2020R1A2B5B01001442).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mun-Yong Lee or Do Sik Min.

Ethics declarations

Ethical approval

All procedures and provisions for animal care were conducted in accordance with the Laboratory Animals Welfare Act, the Guide for the Care and Use of Laboratory Animals, and the Guidelines and Policies for Rodent Survival Surgery provided by the Institutional Animal Care and Use Committee (IACUC) at the College of Medicine of The Catholic University of Korea (Approval number: CUMS-2020–0041-01). All experimental protocols were approved by the IACUC. The IACUC and the Department of Laboratory Animals (DOLA) at the Catholic University of Korea, Songeui Campus, were accredited for the Korea Excellence Animal Laboratory Facility by the Korea Food and Drug Administration in 2017 and acquired full Association for the Assessment and Accreditation of Laboratory Animal Care (AAALAC) International accreditation in 2018.

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riew, TR., Kim, S., Jin, X. et al. Cellular and subcellular localization of endogenous phospholipase D6 in seminiferous tubules of mouse testes. Cell Tissue Res 385, 191–205 (2021). https://doi.org/10.1007/s00441-021-03442-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-021-03442-7

Keywords

Navigation