Skip to main content

Advertisement

Log in

CircRNA-23525 regulates osteogenic differentiation of adipose-derived mesenchymal stem cells via miR-30a-3p

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Adipose-derived mesenchymal stem cells (ADSCs) are considered to be seed cells in bone tissue engineering and emerging evidence indicates that circular RNAs (circRNAs) function in the osteogenic differentiation of ADSCs. The mechanisms of osteoblastic differentiation of ADSCs from the perspective of circRNA modulation are examined in this study. First, circRNA-23525 was upregulated during osteoblastic differentiation of ADSCs. Second, overexpression of circRNA-23525 increased Runx2, ALP and OCN at both mRNA and protein levels. Alkaline phosphatase (ALP) and Alizarin Red staining indicated a similar tendency. Silencing circRNA-23525 produced the opposite effect. Bioinformatics analysis with luciferase assays confirmed that circRNA-23525 functioned as a sponge for miR-30a-3p. In the osteoblastic differentiation of ADSCs, the dynamic expression of miR-30a-3p and circRNA-23525 resulted in an opposite trend at 3, 7 and 14 days. Overexpression of circRNA-23525 downregulated miR-30a-3p and knockdown of circRNA-23525 promoted the expression of miR-30a-3p. Bioinformatics methods and luciferase assays suggested that miR-30a-3p modulated Runx2 expression by targeting 3′UTR. Knockdown of miR-30a-3p facilitated osteogenesis in ADSCs and enhancing miR-30a-3p interfered with the osteogenic process. Finally, circRNA-23525 overexpression significantly increased Runx2 expression, while co-transfection of miR-30a-3p mimics reversed it. Runx2 expression was decreased in circRNA-23525-knockdown ADSCs but expression was rescued by including the miR-30a-3p inhibitor in the osteoblastic process. ALP activity and mineralized bone matrix confirmed the function of circRNA-23525/miR-30a-3p in osteogenesis. Taken together, the current study demonstrated that circRNA-23525 regulates Runx2 expression via targeting miR-30a-3p and is thus a positive regulator in the osteoblastic differentiation of ADSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, MemczakS RN, Kadener S (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56:55–66

    CAS  PubMed  Google Scholar 

  • Bhumiratana S, Bernhard JC, Alfi DM, Yeager K, Eton RE, Bova J, Shah F, Gimble JM, Lopez MJ, Eisig SB, Vunjak-Novakovic G (2016) Tissue-engineered autologous grafts for facial bone reconstruction. Sci Transl Med 8:343ra83

    PubMed  PubMed Central  Google Scholar 

  • Bruderer M, Richards RG, Alini M, Stoddart MJ (2014) Role and regulation of RUNX2 in osteogenesis. Eur Cell Mater 28:269–86

    CAS  PubMed  Google Scholar 

  • Chen LL, Yang L (2015) Regulation of circRNA biogenesis. RNA Biol 12:381–8

    PubMed  PubMed Central  Google Scholar 

  • Chen X, Ouyang Z, Shen Y, Liu B, Zhang Q, Wan L, Yin Z, Zhu W, Li S, Peng D (2019) CircRNA_28313/miR-195a/CSF1 axis modulates osteoclast differentiation to affect OVX-induced bone absorption in mice. RNA Biol 19:1–14

    Google Scholar 

  • Choi YS, Dusting GJ, Stubbs S, Arunothayaraj S, Han XL, Collas P, Morrison WA, Dilley RJ (2010) Differentiation of human adipose-derived stem cells into beating cardiomyocytes. J Cell Mol Med 14:878–89

    CAS  PubMed  PubMed Central  Google Scholar 

  • Compston JE, McClung MR, Leslie WD (2019) Osteoporosis Lancet 393:364–76

    CAS  PubMed  Google Scholar 

  • Du WW, Yang W, Liu E, Yang Z, Dhaliwal P, Yang BB (2016) Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res 44:2846–58

    PubMed  PubMed Central  Google Scholar 

  • Griffin MF, Ibrahim A, Seifalian AM, Butler PEM, Kalaskar DM, Ferretti P (2017) Chemical group-dependent plasma polymerisation preferentially directs adipose stem cell differentiation towards osteogenic or chondrogenic lineages. Acta Biomater 50:450–61

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu XG, Li MY, Jin Y, Liu D, Wei F (2017) Identification and integrated analysis of differentially expressed lncRNAs and circRNAs reveal the potential ceRNA networks during PDLSC osteogenic differentiation. BMC Genet 18:100

    PubMed  PubMed Central  Google Scholar 

  • Han B, Chao J, Yao HH (2018) Circular RNA and its mechanisms in disease: From the bench to the clinic. Pharmacol Ther 187:31–44

    CAS  PubMed  Google Scholar 

  • Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495:384–8

    CAS  PubMed  Google Scholar 

  • Hoseinzadeh S, Atashi A, Soleimani M, Alizadeh E, Zarghami N (2016) MiR-221-inhibited adipose tissue-derived mesenchymal stem cells bioengineered in a nano-hydroxy apatite scaffold. Vitro Cell Dev Biol Anim 52:479–87

    CAS  Google Scholar 

  • Kastrup J, Haack-Sørensen M, Juhl M, HararySøndergaard R, Follin B, Drozd Lund L (2017) Cryopreserved off-the-shelf allogeneic adipose-derived stromal cells for therapy in patients with ischemic heart disease and heart failure-a safety study. Stem Cells Transl Med 6:1963–71

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kern S, Eichler H, Stoeve J, Klüter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem cells 24:1294–301

    CAS  PubMed  Google Scholar 

  • Kim TH, Shah S, Yang L, Yin PT, Hossain MK, Conley B, Choi JW, Lee KB (2015) Controlling differentiation of adipose-derived stem cells using combinatorial graphene hybrid-pattern arrays. ACS Nano 9:3780–90

    CAS  PubMed  PubMed Central  Google Scholar 

  • Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade M, Laneve P, Rajewsky N, Bozzoni I (2017) Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell 66:22–37

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Li T, Fan J, Li T, Fan L, Wang S, Weng X, Han Q, Zhao RC (2015) miR-216a rescues dexamethasone suppression of osteogenesis, promotes osteoblast differentiation and enhances bone formation, by regulating c-Cbl-mediated PI3K/AKT pathway. Cell Death Differ 22:1935–45

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Hu C, Han L, Liu L, Jing W, Tang W, Tian W, Long J (2015) MiR-154-5p regulates osteogenic differentiation of adipose derived mesenchymal stem cells under tensile stress through the Wnt/PCP pathway by targeting Wnt11. Bone 78:130–41

    CAS  PubMed  Google Scholar 

  • Li X, Yang L, Chen LL (2018) The biogenesis, functions and challenges of circular RNAs. Mol Cell 71:428–42

    CAS  PubMed  Google Scholar 

  • Li XB, Zheng YF, Zheng Y, Huang Y, Zhang Y, Jia L, Li W (2018) Circular RNA CDR1as regulates osteoblastic differentiation of periodontal ligament stem cells via the miR-7/GDF5/SMAD and p38 MAPK signaling pathway. Stem Cell Res Ther 9:232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Long F (2011) Building strong bones: molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol 13:27–38

    PubMed  Google Scholar 

  • Long T, Guo ZY, Han L, Yuan XY, Liu L, Jing W, Tian WD, Zheng XH, Tang W, Long J (2018) Differential expression profiles of circular RNAs during osteogenic differentiation of mouse adipose-derived stromal cells. Calcif Tissue Int 103:338–52

    CAS  PubMed  Google Scholar 

  • Martin TJ, Gooi JH, Sims NA (2009) Molecular mechanisms in coupling of bone formation to resorption. Crit Rev Eukaryot Gene Expr 19:73–88

    CAS  PubMed  Google Scholar 

  • Mathew LK, Lee SS, Skuli N, Rao S, Keith B, Nathanson KL, Lal P, Simon MC (2014) Restricted expression of miR-30c-2-3p and miR-30a-3p in clear cell renal cell carcinomas enhances HIF2α activity. Cancer Discov 4:53–60

    CAS  PubMed  Google Scholar 

  • Mesimäki K, Lindroos B, Törnwall J, Mauno J, Lindqvist C, Kontio R, Miettinen S, Suuronen R (2009) Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells. Int J Oral Maxillofac Surg 38:201–9

    PubMed  Google Scholar 

  • Pak J, Lee JH, Park KS, Jeong BC, Lee SH (2016) Regeneration of cartilage in human knee osteoarthritis with autologous adipose tissue-derived stem cells and autologous extracellular matrix. Biores Open Access 5:192–200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peng W, Zhu S, Chen J, Wang J, Rong Q, Chen S (2019) Hsa_circRNA_33287 promotes the osteogenic differentiation of maxillary sinus membrane stem cells via miR-214-3p/Runx3. Biomed Pharmacother 109:1709–17

    CAS  PubMed  Google Scholar 

  • Rybak-Wolf A, Stottmeister C, Glažar P, Jens M, Pino N, Giusti S, Hanan M, Behm M, Bartok O, Ashwal-Fluss R, Herzog M, Schreyer L, Papavasileiou P, Ivanov A, Öhman M, Refojo D, Kadener S, Rajewsky N (2015) Circular RNAs in the mammalian brain are highly abundant, conserved and dynamically expressed. Mol Cell 58:870–85

    CAS  PubMed  Google Scholar 

  • Shi YY, Nacamuli RP, Salim A, Longaker MT (2005) The osteogenic potential of adipose-derived mesenchymal cells is maintained with aging. PlastReconstr Surg 116:1686–96

    CAS  Google Scholar 

  • Sun JJ, Zheng XH, Wang LY, Liu L, Jing W, Lin YF, Tian WD, Tang W, Long J (2014) New bone formation enhanced by ADSCs overexpressing hRunx2 during mandibular distraction osteogenesis in osteoporotic rabbits. J Orthop Res 32:709–20

    CAS  PubMed  Google Scholar 

  • Vermette M, Trottier V, Ménard V, Saint-Pierre L, Roy A, Fradette J (2007) Production of a new tissue-engineered adipose substitute from human adipose-derived stromal cells. Biomaterials 28:2850–60

    CAS  PubMed  Google Scholar 

  • Vicente R, Noël D, Pers YM, Apparailly F, Jorgensen C (2016) Deregulation and therapeutic potential of microRNAs in arthritic diseases. Nat Rev Rheumatol 12:211–20

    CAS  PubMed  Google Scholar 

  • Wen JH, Vincent LG, Fuhrmann A, Choi YS, Hribar KC, Taylor-Weiner H, Chen S, Engler AJ (2014) Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nat Mater 13:979–87

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu T, Zhou H, Hong Y, Li J, Jiang X, Huang H (2012) MiR-30 family members negatively regulate osteoblast differentiation. J Biol Chem 287:7503–11

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, Jin Y, Yang Y, Chen LL, Wang Y, Wong CC, Xiao X, Wang Z (2017) Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res 27:626–64

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan S, Xiang Y, Wang G, Zhou M, Meng G, Liu Q, Hu Z, Li C, Xie W, Wu N, Wu L, Cai T, Ma X, Zhang Y, Yu Z, Bai L, Li Y (2019) Hypoxia-sensitive LINC01436 is regulated by E2F6 and acts as an oncogene by targeting miR-30a-3p in non-small cell lung cancer. Mol Oncol 13:840–56

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang MJ, Jia LF, Zheng YF (2019) circRNA expression profiles in human bone marrow stem cells undergoing osteoblast differentiation. Stem Cell Rev 15:126–38

    CAS  Google Scholar 

  • Zhang Y, Xie RL, Croce CM, Stein JL, Lian JB, van Wijnen AJ, Stein GS (2011) A program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2. Proc Natl Acad Sci U S A 108:9863–8

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng YF, Li XB, Huang YP, Jia L, Li W (2017) The Circular RNA Landscape of Periodontal Ligament Stem Cells During Osteogenesis. J Periodontol 88:906–14

    CAS  PubMed  Google Scholar 

  • Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–28

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by grants from the National Nature Science Foundation of China (Nos. 31570950, 10502037, and 31070833), the Science and Technology Foundation of Sichuan Province (Nos. 2017SZ0032, 2010GZ0225, 2011GZ0335, and 2009SZ0139) and National Key Research and Development Program of China (No. 2016YFC1101404).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Long.

Ethics declarations

Ethical approval

All applicable international, national and institutional guidelines for the care and use of animals were followed. All procedures in our studies involving animals were executed in accordance with a protocol approved by the Animal Research Committee of Sichuan University (Chengdu, China).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Z., Zhao, L., Ji, S. et al. CircRNA-23525 regulates osteogenic differentiation of adipose-derived mesenchymal stem cells via miR-30a-3p. Cell Tissue Res 383, 795–807 (2021). https://doi.org/10.1007/s00441-020-03305-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-020-03305-7

Keywords

Navigation